
-
Previous Article
Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs
- JIMO Home
- This Issue
-
Next Article
An economic order quantity for deteriorating items with allowable rework of deteriorated products
Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method
College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China |
The sparse probabilistic Boolean network (SPBN) model has been applied in various fields of industrial engineering and management. The goal of this model is to find a sparse probability distribution based on a given transition-probability matrix and a set of Boolean networks (BNs). In this paper, a partial proximal-type operator splitting method is proposed to solve a separable minimization problem arising from the study of the SPBN model. All the subproblem-solvers of the proposed method do not involve matrix multiplication, and consequently the proposed method can be used to deal with large-scale problems. The global convergence to a critical point of the proposed method is proved under some mild conditions. Numerical experiments on some real probabilistic Boolean network problems show that the proposed method is effective and efficient compared with some existing methods.
References:
[1] |
Y.-Q. Bai and K.-J. Shen,
Alternating direction method of multipliers for $\ell1-\ell 2$ regularized Logistic regression model, Journal of the Operations Research Society of China, 4 (2016), 243-253.
doi: 10.1007/s40305-015-0090-2. |
[2] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122. Google Scholar |
[3] |
M. Caetano and T. Yoneyama,
An autocatalytic network model for stock markets, Physica A, 419 (2015), 122-127.
doi: 10.1016/j.physa.2014.10.052. |
[4] |
X. Chen, W.-K. Ching and X.-S. Chen,
Construction of probabilistic boolean networks from a prescribed transition probability matrix: A maximum entropy rate approach, East Asian Journal on Applied Mathematics, 1 (2011), 132-154.
doi: 10.4208/eajam.080310.200910a. |
[5] |
X. Chen, H. Jiang and W.-K. Ching,
Construction of sparse probabilistic boolean networks, East Asian Journal of Applied Mathematics, 2 (2012), 1-18.
doi: 10.4208/eajam.030511.060911a. |
[6] |
Y.-H. Dai, D.-R. Han, X.-M. Yuan and W.-X. Zhang,
A sequential updating scheme of Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.
doi: 10.1090/mcom/3104. |
[7] |
J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art Springer US, (1994), 115-134. |
[8] |
M. Fukushima,
Application of the alternating direction method of multipliers to separable convex programming problems, Computational Optimization and Applications, 1 (1992), 93-111.
doi: 10.1007/BF00247655. |
[9] |
J.-W. Gu, W.-K. Ching, T.-K. Siu and H. Zheng, On modeling credit defaults: A probabilistic Boolean network approach, Risk and Decision Analysis, 4 (2013), 119-129. Google Scholar |
[10] |
D.-R. Han, X.-M. Yuan and W.-X. Zhang,
An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Mathematics of Computation, 83 (2014), 2263-2291.
doi: 10.1090/S0025-5718-2014-02829-9. |
[11] |
B.-S. He and X.-M. Yuan,
Alternating direction method of multipliers for linear programming, Journal of the Operations Research Society of China, 4 (2016), 425-436.
doi: 10.1007/s40305-016-0136-0. |
[12] |
B.-S. He, M. Tao and X.-M. Yuan,
Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.
doi: 10.1137/110822347. |
[13] |
I. Ivanov, R. Pal and E.-R. Dougherty,
Dynamics preserving size reduction mappings for probabilistic Boolean networks, IEEE Transactions on Signal Processing, 55 (2007), 2310-2322.
doi: 10.1109/TSP.2006.890929. |
[14] |
K. Kobayashi and K. Hiraishi,
An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks, Automatica, 47 (2011), 1260-1264.
doi: 10.1016/j.automatica.2011.01.035. |
[15] |
K. Kobayashi and K. Hiraishi, A probabilistic approach to control of complex systems and its application to real-time pricing, Mathematical Problems in Engineering, Volume (2014), Art. ID 906717, 8 pp.
doi: 10.1155/2014/906717. |
[16] |
K. Kobayashi and K. Hiraishi, Verification of real-time pricing systems based on probabilistic Boolean networks, Applied Mathematics, 7 (2016), Article ID: 70627, 14 pages.
doi: 10.4236/am.2016.715146. |
[17] |
J. Li, A. Ritter and D. Jurafsky, Inferring user preferences by probabilistic logical reasoning over social networks, preprint, arXiv: 1411.2679. Google Scholar |
[18] |
R. Liang, Y. Qiu and W.-K. Ching, Construction of probabilistic Boolean network for credit default data, Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on. IEEE, (2014), 11-15. Google Scholar |
[19] |
2003. Available from: http://code.google.com/p/pbn-matlab-toolbox. Google Scholar |
[20] |
B.-K. Natraajan,
Sparse approximation to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.
doi: 10.1137/S0097539792240406. |
[21] |
Z. Peng and D.-H. Wu,
A partial parallel splitting augmented Lagrangian method for solving constrained matrix optimization problems, Computers and Mathematics with Applications, 60 (2010), 1515-1524.
doi: 10.1016/j.camwa.2010.06.035. |
[22] |
B.-E. Rhoades, S. Sessa, M.-S. Khan and M. Swaleh,
On fixed points of asymptotically regular mappings, Journal of the Australian Mathematical Society, 43 (1987), 328-346.
doi: 10.1017/S1446788700029621. |
[23] |
I. Shmulevich, E.-R. Dougherty, S. Kim and W. Zhang,
Probabilistic Boolean networks: A rule- based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261-274.
doi: 10.1093/bioinformatics/18.2.261. |
[24] |
I. Shmulevich, E-R. Dougherty and W. Zhang,
From Boolean to probabilistic Boolean networks as models of genetic regulatory networks, Proceedings of the IEEE, 90 (2002), 1778-1792.
doi: 10.1109/JPROC.2002.804686. |
[25] |
I. Shmulevich, E.-R. Dougherty and W. Zhang,
Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics, 18 (2002), 1319-1331.
doi: 10.1093/bioinformatics/18.10.1319. |
[26] |
B. Tian, X.-Q. Yang and K.-W. Meng,
An interior-point $\ell_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization, Journal of Industrial & Management Optimization, 12 (2016), 949-973.
doi: 10.3934/jimo.2016.12.949. |
[27] |
X.-F. Wang and G. Chen, Complex networks: Small-world, scale-free and beyond, IEEE Circuits and Systems Magazine, 3 (2003), 6-20. Google Scholar |
[28] |
Z.-M. Wu, X.-J. Cai and D.-R. Han,
Linearized block-wise alternating direction method of multipliers for multiple-block convex programming, Journal of Industrial & Management Optimization, 14 (2018), 833-855.
doi: 10.3934/jimo.2017078. |
[29] |
M.-H. Xu,
Proximal alternating directions method for structured variational inequalities, Journal of Optimization Theory and Applications, 134 (2007), 107-117.
doi: 10.1007/s10957-007-9192-2. |
[30] |
Z.-B. Xu, H. Guo, Y. Wang and H. Zhang,
The representation of $\ell_{\frac{1}{2}}$ regularizer among $\ell_q (0 < q < 1)$ regularizer: an experimental study based on phase diagram, Acta Automatica Sinica, 38 (2012), 1225-1228.
doi: 10.3724/SP.J.1004.2012.01225. |
[31] |
Z.-B. Xu, X.-Y. Chang, F.-M. Xu and H. Zhang, $\ell_{\frac{1}{2}}$ regularization: a thresholding representation theory and a fast slover, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1013-1027. Google Scholar |
[32] |
F.-M. Xu, Y.-H. Dai, Z.-H. Zhao and Z.-B. Xu, Efficient projected gradient methods for a class of $\ell_0$ constrained optimization problems, Mathematical Programming, to appear. Google Scholar |
[33] |
J. Yang, Y.-Q. Dai, Z. Peng, J.-P. Zhuang and W.-X. Zhu,
A homotopy alternating direction method of multipliers for linearly constrained separable convex optimization, Journal of the Operations Research Society of China, 5 (2017), 271-290.
doi: 10.1007/s40305-017-0170-6. |
[34] |
J. Zeng, S. Lin, Y. Wang and Z.-B. Xu,
$\ell_\frac{1}{2}$ Regularization: convergence of iterative half thresholding algorithm, IEEE Transactions on Signal Processing, 62 (2014), 2317-2329.
doi: 10.1109/TSP.2014.2309076. |
[35] |
K.-Z. Zhang and L.-Z. Zhang, Controllability of probabilistic Boolean control networks with time-variant delays in states, Science China: Information Sciences, 59(9)(2016), 092204, 10pp.
doi: 10.1007/s11432-015-5423-6. |
show all references
References:
[1] |
Y.-Q. Bai and K.-J. Shen,
Alternating direction method of multipliers for $\ell1-\ell 2$ regularized Logistic regression model, Journal of the Operations Research Society of China, 4 (2016), 243-253.
doi: 10.1007/s40305-015-0090-2. |
[2] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122. Google Scholar |
[3] |
M. Caetano and T. Yoneyama,
An autocatalytic network model for stock markets, Physica A, 419 (2015), 122-127.
doi: 10.1016/j.physa.2014.10.052. |
[4] |
X. Chen, W.-K. Ching and X.-S. Chen,
Construction of probabilistic boolean networks from a prescribed transition probability matrix: A maximum entropy rate approach, East Asian Journal on Applied Mathematics, 1 (2011), 132-154.
doi: 10.4208/eajam.080310.200910a. |
[5] |
X. Chen, H. Jiang and W.-K. Ching,
Construction of sparse probabilistic boolean networks, East Asian Journal of Applied Mathematics, 2 (2012), 1-18.
doi: 10.4208/eajam.030511.060911a. |
[6] |
Y.-H. Dai, D.-R. Han, X.-M. Yuan and W.-X. Zhang,
A sequential updating scheme of Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.
doi: 10.1090/mcom/3104. |
[7] |
J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art Springer US, (1994), 115-134. |
[8] |
M. Fukushima,
Application of the alternating direction method of multipliers to separable convex programming problems, Computational Optimization and Applications, 1 (1992), 93-111.
doi: 10.1007/BF00247655. |
[9] |
J.-W. Gu, W.-K. Ching, T.-K. Siu and H. Zheng, On modeling credit defaults: A probabilistic Boolean network approach, Risk and Decision Analysis, 4 (2013), 119-129. Google Scholar |
[10] |
D.-R. Han, X.-M. Yuan and W.-X. Zhang,
An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Mathematics of Computation, 83 (2014), 2263-2291.
doi: 10.1090/S0025-5718-2014-02829-9. |
[11] |
B.-S. He and X.-M. Yuan,
Alternating direction method of multipliers for linear programming, Journal of the Operations Research Society of China, 4 (2016), 425-436.
doi: 10.1007/s40305-016-0136-0. |
[12] |
B.-S. He, M. Tao and X.-M. Yuan,
Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.
doi: 10.1137/110822347. |
[13] |
I. Ivanov, R. Pal and E.-R. Dougherty,
Dynamics preserving size reduction mappings for probabilistic Boolean networks, IEEE Transactions on Signal Processing, 55 (2007), 2310-2322.
doi: 10.1109/TSP.2006.890929. |
[14] |
K. Kobayashi and K. Hiraishi,
An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks, Automatica, 47 (2011), 1260-1264.
doi: 10.1016/j.automatica.2011.01.035. |
[15] |
K. Kobayashi and K. Hiraishi, A probabilistic approach to control of complex systems and its application to real-time pricing, Mathematical Problems in Engineering, Volume (2014), Art. ID 906717, 8 pp.
doi: 10.1155/2014/906717. |
[16] |
K. Kobayashi and K. Hiraishi, Verification of real-time pricing systems based on probabilistic Boolean networks, Applied Mathematics, 7 (2016), Article ID: 70627, 14 pages.
doi: 10.4236/am.2016.715146. |
[17] |
J. Li, A. Ritter and D. Jurafsky, Inferring user preferences by probabilistic logical reasoning over social networks, preprint, arXiv: 1411.2679. Google Scholar |
[18] |
R. Liang, Y. Qiu and W.-K. Ching, Construction of probabilistic Boolean network for credit default data, Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on. IEEE, (2014), 11-15. Google Scholar |
[19] |
2003. Available from: http://code.google.com/p/pbn-matlab-toolbox. Google Scholar |
[20] |
B.-K. Natraajan,
Sparse approximation to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.
doi: 10.1137/S0097539792240406. |
[21] |
Z. Peng and D.-H. Wu,
A partial parallel splitting augmented Lagrangian method for solving constrained matrix optimization problems, Computers and Mathematics with Applications, 60 (2010), 1515-1524.
doi: 10.1016/j.camwa.2010.06.035. |
[22] |
B.-E. Rhoades, S. Sessa, M.-S. Khan and M. Swaleh,
On fixed points of asymptotically regular mappings, Journal of the Australian Mathematical Society, 43 (1987), 328-346.
doi: 10.1017/S1446788700029621. |
[23] |
I. Shmulevich, E.-R. Dougherty, S. Kim and W. Zhang,
Probabilistic Boolean networks: A rule- based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261-274.
doi: 10.1093/bioinformatics/18.2.261. |
[24] |
I. Shmulevich, E-R. Dougherty and W. Zhang,
From Boolean to probabilistic Boolean networks as models of genetic regulatory networks, Proceedings of the IEEE, 90 (2002), 1778-1792.
doi: 10.1109/JPROC.2002.804686. |
[25] |
I. Shmulevich, E.-R. Dougherty and W. Zhang,
Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics, 18 (2002), 1319-1331.
doi: 10.1093/bioinformatics/18.10.1319. |
[26] |
B. Tian, X.-Q. Yang and K.-W. Meng,
An interior-point $\ell_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization, Journal of Industrial & Management Optimization, 12 (2016), 949-973.
doi: 10.3934/jimo.2016.12.949. |
[27] |
X.-F. Wang and G. Chen, Complex networks: Small-world, scale-free and beyond, IEEE Circuits and Systems Magazine, 3 (2003), 6-20. Google Scholar |
[28] |
Z.-M. Wu, X.-J. Cai and D.-R. Han,
Linearized block-wise alternating direction method of multipliers for multiple-block convex programming, Journal of Industrial & Management Optimization, 14 (2018), 833-855.
doi: 10.3934/jimo.2017078. |
[29] |
M.-H. Xu,
Proximal alternating directions method for structured variational inequalities, Journal of Optimization Theory and Applications, 134 (2007), 107-117.
doi: 10.1007/s10957-007-9192-2. |
[30] |
Z.-B. Xu, H. Guo, Y. Wang and H. Zhang,
The representation of $\ell_{\frac{1}{2}}$ regularizer among $\ell_q (0 < q < 1)$ regularizer: an experimental study based on phase diagram, Acta Automatica Sinica, 38 (2012), 1225-1228.
doi: 10.3724/SP.J.1004.2012.01225. |
[31] |
Z.-B. Xu, X.-Y. Chang, F.-M. Xu and H. Zhang, $\ell_{\frac{1}{2}}$ regularization: a thresholding representation theory and a fast slover, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1013-1027. Google Scholar |
[32] |
F.-M. Xu, Y.-H. Dai, Z.-H. Zhao and Z.-B. Xu, Efficient projected gradient methods for a class of $\ell_0$ constrained optimization problems, Mathematical Programming, to appear. Google Scholar |
[33] |
J. Yang, Y.-Q. Dai, Z. Peng, J.-P. Zhuang and W.-X. Zhu,
A homotopy alternating direction method of multipliers for linearly constrained separable convex optimization, Journal of the Operations Research Society of China, 5 (2017), 271-290.
doi: 10.1007/s40305-017-0170-6. |
[34] |
J. Zeng, S. Lin, Y. Wang and Z.-B. Xu,
$\ell_\frac{1}{2}$ Regularization: convergence of iterative half thresholding algorithm, IEEE Transactions on Signal Processing, 62 (2014), 2317-2329.
doi: 10.1109/TSP.2014.2309076. |
[35] |
K.-Z. Zhang and L.-Z. Zhang, Controllability of probabilistic Boolean control networks with time-variant delays in states, Science China: Information Sciences, 59(9)(2016), 092204, 10pp.
doi: 10.1007/s11432-015-5423-6. |
Stopping error |
||||||
Total iteration number |
97 | 260 | 267 | 520 | 562 | 722 |
Identified major BNs | 104 | |||||
118 | ||||||
189 | 118 | 118 | 118 | 118 | 118 | |
358 | 360 | 360 | 360 | 360 | 360 | |
360 | 395 | 395 | 395 | 395 | 395 | |
376 | 594 | 594 | 594 | 594 | 594 | |
395 | 836 | 836 | 836 | 836 | 836 | |
594 | 911 | 911 | 911 | 911 | 911 | |
836 | 939 | 939 | 939 | 939 | 939 | |
911 | ||||||
939 |
Stopping error |
||||||
Total iteration number |
97 | 260 | 267 | 520 | 562 | 722 |
Identified major BNs | 104 | |||||
118 | ||||||
189 | 118 | 118 | 118 | 118 | 118 | |
358 | 360 | 360 | 360 | 360 | 360 | |
360 | 395 | 395 | 395 | 395 | 395 | |
376 | 594 | 594 | 594 | 594 | 594 | |
395 | 836 | 836 | 836 | 836 | 836 | |
594 | 911 | 911 | 911 | 911 | 911 | |
836 | 939 | 939 | 939 | 939 | 939 | |
911 | ||||||
939 |
[1] |
Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056 |
[2] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[3] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[4] |
Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020121 |
[5] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[6] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[7] |
Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096 |
[8] |
El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355 |
[9] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020447 |
[10] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[11] |
Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067 |
[12] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[13] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021002 |
[14] |
Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020358 |
[15] |
Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365 |
[16] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[17] |
Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278 |
[18] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[19] |
Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246 |
[20] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]