[1]
|
Y.-Q. Bai and K.-J. Shen, Alternating direction method of multipliers for $\ell1-\ell 2$ regularized Logistic regression model, Journal of the Operations Research Society of China, 4 (2016), 243-253.
doi: 10.1007/s40305-015-0090-2.
|
[2]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3 (2010), 1-122.
|
[3]
|
M. Caetano and T. Yoneyama, An autocatalytic network model for stock markets, Physica A, 419 (2015), 122-127.
doi: 10.1016/j.physa.2014.10.052.
|
[4]
|
X. Chen, W.-K. Ching and X.-S. Chen, Construction of probabilistic boolean networks from a prescribed transition probability matrix: A maximum entropy rate approach, East Asian Journal on Applied Mathematics, 1 (2011), 132-154.
doi: 10.4208/eajam.080310.200910a.
|
[5]
|
X. Chen, H. Jiang and W.-K. Ching, Construction of sparse probabilistic boolean networks, East Asian Journal of Applied Mathematics, 2 (2012), 1-18.
doi: 10.4208/eajam.030511.060911a.
|
[6]
|
Y.-H. Dai, D.-R. Han, X.-M. Yuan and W.-X. Zhang, A sequential updating scheme of Lagrange multiplier for separable convex programming, Mathematics of Computation, 86 (2017), 315-343.
doi: 10.1090/mcom/3104.
|
[7]
|
J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, in Large Scale Optimization: State of the Art Springer US, (1994), 115-134.
|
[8]
|
M. Fukushima, Application of the alternating direction method of multipliers to separable convex programming problems, Computational Optimization and Applications, 1 (1992), 93-111.
doi: 10.1007/BF00247655.
|
[9]
|
J.-W. Gu, W.-K. Ching, T.-K. Siu and H. Zheng, On modeling credit defaults: A probabilistic Boolean network approach, Risk and Decision Analysis, 4 (2013), 119-129.
|
[10]
|
D.-R. Han, X.-M. Yuan and W.-X. Zhang, An augmented Lagrangian based parallel splitting method for separable convex minimization with applications to image processing, Mathematics of Computation, 83 (2014), 2263-2291.
doi: 10.1090/S0025-5718-2014-02829-9.
|
[11]
|
B.-S. He and X.-M. Yuan, Alternating direction method of multipliers for linear programming, Journal of the Operations Research Society of China, 4 (2016), 425-436.
doi: 10.1007/s40305-016-0136-0.
|
[12]
|
B.-S. He, M. Tao and X.-M. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.
doi: 10.1137/110822347.
|
[13]
|
I. Ivanov, R. Pal and E.-R. Dougherty, Dynamics preserving size reduction mappings for probabilistic Boolean networks, IEEE Transactions on Signal Processing, 55 (2007), 2310-2322.
doi: 10.1109/TSP.2006.890929.
|
[14]
|
K. Kobayashi and K. Hiraishi, An integer programming approach to optimal control problems in context-sensitive probabilistic Boolean networks, Automatica, 47 (2011), 1260-1264.
doi: 10.1016/j.automatica.2011.01.035.
|
[15]
|
K. Kobayashi and K. Hiraishi, A probabilistic approach to control of complex systems and its application to real-time pricing, Mathematical Problems in Engineering, Volume (2014), Art. ID 906717, 8 pp.
doi: 10.1155/2014/906717.
|
[16]
|
K. Kobayashi and K. Hiraishi, Verification of real-time pricing systems based on probabilistic Boolean networks, Applied Mathematics, 7 (2016), Article ID: 70627, 14 pages.
doi: 10.4236/am.2016.715146.
|
[17]
|
J. Li, A. Ritter and D. Jurafsky, Inferring user preferences by probabilistic logical reasoning over social networks, preprint, arXiv: 1411.2679.
|
[18]
|
R. Liang, Y. Qiu and W.-K. Ching, Construction of probabilistic Boolean network for credit default data, Computational Sciences and Optimization (CSO), 2014 Seventh International Joint Conference on. IEEE, (2014), 11-15.
|
[19]
|
2003. Available from: http://code.google.com/p/pbn-matlab-toolbox.
|
[20]
|
B.-K. Natraajan, Sparse approximation to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.
doi: 10.1137/S0097539792240406.
|
[21]
|
Z. Peng and D.-H. Wu, A partial parallel splitting augmented Lagrangian method for solving constrained matrix optimization problems, Computers and Mathematics with Applications, 60 (2010), 1515-1524.
doi: 10.1016/j.camwa.2010.06.035.
|
[22]
|
B.-E. Rhoades, S. Sessa, M.-S. Khan and M. Swaleh, On fixed points of asymptotically regular mappings, Journal of the Australian Mathematical Society, 43 (1987), 328-346.
doi: 10.1017/S1446788700029621.
|
[23]
|
I. Shmulevich, E.-R. Dougherty, S. Kim and W. Zhang, Probabilistic Boolean networks: A rule- based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261-274.
doi: 10.1093/bioinformatics/18.2.261.
|
[24]
|
I. Shmulevich, E-R. Dougherty and W. Zhang, From Boolean to probabilistic Boolean networks as models of genetic regulatory networks, Proceedings of the IEEE, 90 (2002), 1778-1792.
doi: 10.1109/JPROC.2002.804686.
|
[25]
|
I. Shmulevich, E.-R. Dougherty and W. Zhang, Gene perturbation and intervention in probabilistic Boolean networks, Bioinformatics, 18 (2002), 1319-1331.
doi: 10.1093/bioinformatics/18.10.1319.
|
[26]
|
B. Tian, X.-Q. Yang and K.-W. Meng, An interior-point $\ell_{\frac{1}{2}}$-penalty method for inequality constrained nonlinear optimization, Journal of Industrial & Management Optimization, 12 (2016), 949-973.
doi: 10.3934/jimo.2016.12.949.
|
[27]
|
X.-F. Wang and G. Chen, Complex networks: Small-world, scale-free and beyond, IEEE Circuits and Systems Magazine, 3 (2003), 6-20.
|
[28]
|
Z.-M. Wu, X.-J. Cai and D.-R. Han, Linearized block-wise alternating direction method of multipliers for multiple-block convex programming, Journal of Industrial & Management Optimization, 14 (2018), 833-855.
doi: 10.3934/jimo.2017078.
|
[29]
|
M.-H. Xu, Proximal alternating directions method for structured variational inequalities, Journal of Optimization Theory and Applications, 134 (2007), 107-117.
doi: 10.1007/s10957-007-9192-2.
|
[30]
|
Z.-B. Xu, H. Guo, Y. Wang and H. Zhang, The representation of $\ell_{\frac{1}{2}}$ regularizer among $\ell_q (0 < q < 1)$ regularizer: an experimental study based on phase diagram, Acta Automatica Sinica, 38 (2012), 1225-1228.
doi: 10.3724/SP.J.1004.2012.01225.
|
[31]
|
Z.-B. Xu, X.-Y. Chang, F.-M. Xu and H. Zhang, $\ell_{\frac{1}{2}}$ regularization: a thresholding representation theory and a fast slover, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 1013-1027.
|
[32]
|
F.-M. Xu, Y.-H. Dai, Z.-H. Zhao and Z.-B. Xu, Efficient projected gradient methods for a class of $\ell_0$ constrained optimization problems, Mathematical Programming, to appear.
|
[33]
|
J. Yang, Y.-Q. Dai, Z. Peng, J.-P. Zhuang and W.-X. Zhu, A homotopy alternating direction method of multipliers for linearly constrained separable convex optimization, Journal of the Operations Research Society of China, 5 (2017), 271-290.
doi: 10.1007/s40305-017-0170-6.
|
[34]
|
J. Zeng, S. Lin, Y. Wang and Z.-B. Xu, $\ell_\frac{1}{2}$ Regularization: convergence of iterative half thresholding algorithm, IEEE Transactions on Signal Processing, 62 (2014), 2317-2329.
doi: 10.1109/TSP.2014.2309076.
|
[35]
|
K.-Z. Zhang and L.-Z. Zhang, Controllability of probabilistic Boolean control networks with time-variant delays in states, Science China: Information Sciences, 59(9)(2016), 092204, 10pp.
doi: 10.1007/s11432-015-5423-6.
|