October  2019, 15(4): 1897-1920. doi: 10.3934/jimo.2018128

Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs

Laboratoire MISI, Faculté des Sciences et Techniques, Univ. Hassan 1, Settat, 26000, Morocco

* Corresponding author: Ahmed Roubi

The authors would like to thank a referee for his valuable comments

Received  January 2018 Revised  March 2018 Published  August 2018

In this work, we propose an approximating scheme based on the proximal point algorithm, for solving generalized fractional programs (GFP) by their continuous reformulation, also known to as partial dual counterparts of GFP. Bundle dual algorithms are then derived from this scheme. We prove the convergence and the rate of convergence of these algorithms. As for dual algorithms, the proposed methods generate a sequence of values that converges from below to the minimal value of $(P)$, and a sequence of approximate solutions that converges to a solution of the dual problem. For certain classes of problems, the convergence is at least linear.

Citation: Hssaine Boualam, Ahmed Roubi. Dual algorithms based on the proximal bundle method for solving convex minimax fractional programs. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1897-1920. doi: 10.3934/jimo.2018128
References:
[1]

A. Addou and A. Roubi, Proximal-type methods with generalized Bregman functions and applications to generalized fractional programming, Optimization, 59 (2010), 1085-1105.  doi: 10.1080/02331930903395857.  Google Scholar

[2]

S. AddouneM. El Haffari and A. Roubi, A proximal point algorithm for generalized fractional programs, Optimization, 66 (2017), 1495-1517.  doi: 10.1080/02331934.2017.1338698.  Google Scholar

[3]

A. I. BarrosJ. B. G. FrenkS. Schaible and S. Zhang, A new algorithm for generalized fractional programs, Mathematical Programming, 72 (1996), 147-175.  doi: 10.1007/BF02592087.  Google Scholar

[4]

A. I. BarrosJ. B. G. FrenkS. Schaible and S. Zhang, Using duality to solve generalized fractional programming problems, Journal of Global Optimization, 8 (1996), 139-170.  doi: 10.1007/BF00138690.  Google Scholar

[5]

C. R. BectorS. Chandra and M. K. Bector, Generalized fractional programming duality: A parametric approach, Journal of Optimization Theory and Applications, 60 (1989), 243-260.  doi: 10.1007/BF00940006.  Google Scholar

[6]

J. C. Bernard and J. A. Ferland, Convergence of interval-type algorithms for generalized fractional programming, Mathematical Programming, 43 (1989), 349-363.  doi: 10.1007/BF01582298.  Google Scholar

[7]

K. Boufi and A. Roubi, Prox-regularization of the dual method of centers for generalized fractional programs, To appear in Optimization Methods and Software. doi: 10.1080/10556788.2017.1392520.  Google Scholar

[8]

K. Boufi and A. Roubi, Dual method of centers for solving generalized fractional programs, Journal of Global Optimization, 69 (2017), 387-426.  doi: 10.1007/s10898-017-0523-z.  Google Scholar

[9]

M. C. Burke and J. V. Ferris, Weak sharp minima in mathematical programming, SIAM Journal on Control and Optimization, 31 (1993), 1340-1359.  doi: 10.1137/0331063.  Google Scholar

[10]

R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization, Mathematical Programming, 62 (1993), 261-275.  doi: 10.1007/BF01585170.  Google Scholar

[11]

J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191-207.  doi: 10.1007/BF01582887.  Google Scholar

[12]

J. P. CrouzeixJ. A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Mathematical Programming, 27 (1983), 342-354.  doi: 10.1007/BF02591908.  Google Scholar

[13]

J. P. CrouzeixJ. A. Ferland and S. Schaible, An algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 47 (1985), 35-49.  doi: 10.1007/BF00941314.  Google Scholar

[14]

J. P. CrouzeixJ. A. Ferland and S. Schaible, A note on an algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 50 (1986), 183-187.  doi: 10.1007/BF00938484.  Google Scholar

[15]

M. El Haffari and A. Roubi, Convergence of a proximal algorithm for solving the dual of a generalized fractional program, RAIRO-Oper. Res., 51 (2017), 985-1004.  doi: 10.1051/ro/2017004.  Google Scholar

[16]

M. El Haffari and A. Roubi, Prox-dual regularization algorithm for generalized fractional programs, Journal of Industrial and Management Optimization, 13 (2017), 1991-2013.  doi: 10.3934/jimo.2017028.  Google Scholar

[17]

J. E. Falk, Maximization of signal-to-noise ratio in an optical filter, SIAM Appl. Math., 17 (1969), 582-592.  doi: 10.1137/0117055.  Google Scholar

[18]

J. B. G. Frenk and S. Schaible, Fractional Programming, ERIM Report Series, Reference No. ERS-2004-074-LIS, 2004. Google Scholar

[19]

M. Fukushima, A descent algorithm for nonsmooth convex optimization, Mathematical Programming, 30 (1984), 163-175.  doi: 10.1007/BF02591883.  Google Scholar

[20]

M. Gugat, Prox-regularization methods for generalized fractional programming, Journal of Optimization Theory and Applications, 99 (1998), 691-722.  doi: 10.1023/A:1021759318653.  Google Scholar

[21]

O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, 29 (1991), 403-419.  doi: 10.1137/0329022.  Google Scholar

[22]

J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, Springer-Verlag, 1993. doi: 10.1007/978-3-662-06409-2.  Google Scholar

[23]

R. Jagannathan and S. Schaible, Duality in generalized fractional programming via Farkas lemma, Journal of Optimization Theory and Applications, 41 (1983), 417-424.  doi: 10.1007/BF00935361.  Google Scholar

[24]

K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathematical Programming, 27 (1983), 320-341.  doi: 10.1007/BF02591907.  Google Scholar

[25]

K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0074500.  Google Scholar

[26]

K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Mathematical Programming, 46 (1990), 105-122.  doi: 10.1007/BF01585731.  Google Scholar

[27]

C. Lemaréchal, Bundle methods in nonsmooth optimization, in Nonsmooth Optimization (eds. C. Lemaréchal and R. Mifflin), Pergamon Press, Oxford, 3 (1978), 79-102.  Google Scholar

[28]

C. Lemaréchal, Constructing bundle methods for convex optimization, in Fermat Days 85: Mathematics for Optimization (eds. J. B. Hiriart-Urruty), North-Holland, Amsterdam, (1986), 201-240. doi: 10.1016/S0304-0208(08)72400-9.  Google Scholar

[29]

M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optimization Methods and Software, 17 (2002), 1-29.  doi: 10.1080/10556780290027828.  Google Scholar

[30]

B. Martinet, Régularisation d'inéquations variationnelles par approximation successives, Revue Française d'Informatique et Recherche Opérationnelle, 4 (1970), 154-158.   Google Scholar

[31]

R. Mifflin, An algorithm for constrained optimization with semismooth functions, Math. Oper. Res., 2 (1977), 191-207.  doi: 10.1287/moor.2.2.191.  Google Scholar

[32]

R. Mifflin, A modification and extension of Lemaréchal's algorithm for nonsmooth minimization, Math. Programming Stud., 17 (1982), 77-90.  doi: 10.1007/BFb0120960.  Google Scholar

[33]

J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), 273-299.   Google Scholar

[34]

A. Nagih and G. Plateau, Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution, RAIRO - Operations Research, 33 (1999), 383-419.  doi: 10.1051/ro:1999118.  Google Scholar

[35]

B. T. Polyak, Introduction to Optimization, Translations Series in Mathematics and Engineering, Optimization Software, Inc. Publications Division, New York, 1987.  Google Scholar

[36]

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N. J., 1970.  Google Scholar

[37]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976), 877-898.  doi: 10.1137/0314056.  Google Scholar

[38]

A. Roubi, Method of centers for generalized fractional programming, Journal of Optimization Theory and Applications, 107 (2000), 123-143.  doi: 10.1023/A:1004660917684.  Google Scholar

[39]

A. Roubi, Convergence of prox-regularization methods for generalized fractional programming, RAIRO-Oper. Res., 36 (2002), 73-94.  doi: 10.1051/ro:2002006.  Google Scholar

[40]

S. Schaible, Fractional programming, in Handbook Global Optimization (eds. R. Horst, PM Pardalos), Kluwer, Dordrecht, 2 (1995), 495-608.  doi: 10.1007/978-1-4615-2025-2.  Google Scholar

[41]

H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results, SIAM Journal on Optimization, 2 (1992), 121-152.  doi: 10.1137/0802008.  Google Scholar

[42]

M. Sion, On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.  doi: 10.2140/pjm.1958.8.171.  Google Scholar

[43]

J. J. StrodiotJ. P. CrouzeixJ. A. Ferland and V. H. Nguyen, An inexact proximal point method for solving generalized fractional programs, Journal of Global Optimization, 42 (2008), 121-138.  doi: 10.1007/s10898-007-9270-x.  Google Scholar

show all references

References:
[1]

A. Addou and A. Roubi, Proximal-type methods with generalized Bregman functions and applications to generalized fractional programming, Optimization, 59 (2010), 1085-1105.  doi: 10.1080/02331930903395857.  Google Scholar

[2]

S. AddouneM. El Haffari and A. Roubi, A proximal point algorithm for generalized fractional programs, Optimization, 66 (2017), 1495-1517.  doi: 10.1080/02331934.2017.1338698.  Google Scholar

[3]

A. I. BarrosJ. B. G. FrenkS. Schaible and S. Zhang, A new algorithm for generalized fractional programs, Mathematical Programming, 72 (1996), 147-175.  doi: 10.1007/BF02592087.  Google Scholar

[4]

A. I. BarrosJ. B. G. FrenkS. Schaible and S. Zhang, Using duality to solve generalized fractional programming problems, Journal of Global Optimization, 8 (1996), 139-170.  doi: 10.1007/BF00138690.  Google Scholar

[5]

C. R. BectorS. Chandra and M. K. Bector, Generalized fractional programming duality: A parametric approach, Journal of Optimization Theory and Applications, 60 (1989), 243-260.  doi: 10.1007/BF00940006.  Google Scholar

[6]

J. C. Bernard and J. A. Ferland, Convergence of interval-type algorithms for generalized fractional programming, Mathematical Programming, 43 (1989), 349-363.  doi: 10.1007/BF01582298.  Google Scholar

[7]

K. Boufi and A. Roubi, Prox-regularization of the dual method of centers for generalized fractional programs, To appear in Optimization Methods and Software. doi: 10.1080/10556788.2017.1392520.  Google Scholar

[8]

K. Boufi and A. Roubi, Dual method of centers for solving generalized fractional programs, Journal of Global Optimization, 69 (2017), 387-426.  doi: 10.1007/s10898-017-0523-z.  Google Scholar

[9]

M. C. Burke and J. V. Ferris, Weak sharp minima in mathematical programming, SIAM Journal on Control and Optimization, 31 (1993), 1340-1359.  doi: 10.1137/0331063.  Google Scholar

[10]

R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization, Mathematical Programming, 62 (1993), 261-275.  doi: 10.1007/BF01585170.  Google Scholar

[11]

J. P. Crouzeix and J. A. Ferland, Algorithms for generalized fractional programming, Mathematical Programming, 52 (1991), 191-207.  doi: 10.1007/BF01582887.  Google Scholar

[12]

J. P. CrouzeixJ. A. Ferland and S. Schaible, Duality in generalized linear fractional programming, Mathematical Programming, 27 (1983), 342-354.  doi: 10.1007/BF02591908.  Google Scholar

[13]

J. P. CrouzeixJ. A. Ferland and S. Schaible, An algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 47 (1985), 35-49.  doi: 10.1007/BF00941314.  Google Scholar

[14]

J. P. CrouzeixJ. A. Ferland and S. Schaible, A note on an algorithm for generalized fractional programs, Journal of Optimization Theory and Applications, 50 (1986), 183-187.  doi: 10.1007/BF00938484.  Google Scholar

[15]

M. El Haffari and A. Roubi, Convergence of a proximal algorithm for solving the dual of a generalized fractional program, RAIRO-Oper. Res., 51 (2017), 985-1004.  doi: 10.1051/ro/2017004.  Google Scholar

[16]

M. El Haffari and A. Roubi, Prox-dual regularization algorithm for generalized fractional programs, Journal of Industrial and Management Optimization, 13 (2017), 1991-2013.  doi: 10.3934/jimo.2017028.  Google Scholar

[17]

J. E. Falk, Maximization of signal-to-noise ratio in an optical filter, SIAM Appl. Math., 17 (1969), 582-592.  doi: 10.1137/0117055.  Google Scholar

[18]

J. B. G. Frenk and S. Schaible, Fractional Programming, ERIM Report Series, Reference No. ERS-2004-074-LIS, 2004. Google Scholar

[19]

M. Fukushima, A descent algorithm for nonsmooth convex optimization, Mathematical Programming, 30 (1984), 163-175.  doi: 10.1007/BF02591883.  Google Scholar

[20]

M. Gugat, Prox-regularization methods for generalized fractional programming, Journal of Optimization Theory and Applications, 99 (1998), 691-722.  doi: 10.1023/A:1021759318653.  Google Scholar

[21]

O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM Journal on Control and Optimization, 29 (1991), 403-419.  doi: 10.1137/0329022.  Google Scholar

[22]

J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms II, Springer-Verlag, 1993. doi: 10.1007/978-3-662-06409-2.  Google Scholar

[23]

R. Jagannathan and S. Schaible, Duality in generalized fractional programming via Farkas lemma, Journal of Optimization Theory and Applications, 41 (1983), 417-424.  doi: 10.1007/BF00935361.  Google Scholar

[24]

K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex minimization, Mathematical Programming, 27 (1983), 320-341.  doi: 10.1007/BF02591907.  Google Scholar

[25]

K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1985. doi: 10.1007/BFb0074500.  Google Scholar

[26]

K. C. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization, Mathematical Programming, 46 (1990), 105-122.  doi: 10.1007/BF01585731.  Google Scholar

[27]

C. Lemaréchal, Bundle methods in nonsmooth optimization, in Nonsmooth Optimization (eds. C. Lemaréchal and R. Mifflin), Pergamon Press, Oxford, 3 (1978), 79-102.  Google Scholar

[28]

C. Lemaréchal, Constructing bundle methods for convex optimization, in Fermat Days 85: Mathematics for Optimization (eds. J. B. Hiriart-Urruty), North-Holland, Amsterdam, (1986), 201-240. doi: 10.1016/S0304-0208(08)72400-9.  Google Scholar

[29]

M. Mäkelä, Survey of bundle methods for nonsmooth optimization, Optimization Methods and Software, 17 (2002), 1-29.  doi: 10.1080/10556780290027828.  Google Scholar

[30]

B. Martinet, Régularisation d'inéquations variationnelles par approximation successives, Revue Française d'Informatique et Recherche Opérationnelle, 4 (1970), 154-158.   Google Scholar

[31]

R. Mifflin, An algorithm for constrained optimization with semismooth functions, Math. Oper. Res., 2 (1977), 191-207.  doi: 10.1287/moor.2.2.191.  Google Scholar

[32]

R. Mifflin, A modification and extension of Lemaréchal's algorithm for nonsmooth minimization, Math. Programming Stud., 17 (1982), 77-90.  doi: 10.1007/BFb0120960.  Google Scholar

[33]

J. J. Moreau, Proximité et dualité dans un espace hilbertien, Bull. Soc. Math. France, 93 (1965), 273-299.   Google Scholar

[34]

A. Nagih and G. Plateau, Problèmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution, RAIRO - Operations Research, 33 (1999), 383-419.  doi: 10.1051/ro:1999118.  Google Scholar

[35]

B. T. Polyak, Introduction to Optimization, Translations Series in Mathematics and Engineering, Optimization Software, Inc. Publications Division, New York, 1987.  Google Scholar

[36]

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N. J., 1970.  Google Scholar

[37]

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM Journal on Control and Optimization, 14 (1976), 877-898.  doi: 10.1137/0314056.  Google Scholar

[38]

A. Roubi, Method of centers for generalized fractional programming, Journal of Optimization Theory and Applications, 107 (2000), 123-143.  doi: 10.1023/A:1004660917684.  Google Scholar

[39]

A. Roubi, Convergence of prox-regularization methods for generalized fractional programming, RAIRO-Oper. Res., 36 (2002), 73-94.  doi: 10.1051/ro:2002006.  Google Scholar

[40]

S. Schaible, Fractional programming, in Handbook Global Optimization (eds. R. Horst, PM Pardalos), Kluwer, Dordrecht, 2 (1995), 495-608.  doi: 10.1007/978-1-4615-2025-2.  Google Scholar

[41]

H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results, SIAM Journal on Optimization, 2 (1992), 121-152.  doi: 10.1137/0802008.  Google Scholar

[42]

M. Sion, On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.  doi: 10.2140/pjm.1958.8.171.  Google Scholar

[43]

J. J. StrodiotJ. P. CrouzeixJ. A. Ferland and V. H. Nguyen, An inexact proximal point method for solving generalized fractional programs, Journal of Global Optimization, 42 (2008), 121-138.  doi: 10.1007/s10898-007-9270-x.  Google Scholar

Table 1.  Results for Algorithm 5 and Algorithm [43] with $n = 10$, $m = 10$ and $p = 5$.
$\bf{n=10}$ $\bf{m=10}$ $\bf{p=5}$
Algo 5 Algo [43]
$\bf{ \pmb{\mathsf{ β}}_k}$ $c$ 0.01 0.05 0.1 0.5 0.9 0.01 0.05 0.1 0.5 0.9
0.01 Av. IT 13.1 11.2 10.6 9.7 6.8 8.1 8.8 7.8 5.8 4.6
Av. QP 137.7 102 95.8 89.8 73.6 81.3 88.3 78.7 62.6 48.8
Av. T(s) 21.6 14.6 13.7 13.5 11.7 12 12.7 11.6 10.4 8.2
0.5 Av. IT 13.1 12.9 12.2 9.9 7.2 8.7 8.8 7.4 6 4.5
Av. QP 81.6 84.5 75.7 66.2 56.4 67.4 69.6 55 47.9 40
Av. T(s) 8.8 9.6 8.8 8.4 7.3 8.8 9.1 7.7 7.3 6.3
1 Av. IT 13.8 13 10.7 10.3 7.1 8.6 7.6 7.4 5.3 4.7
Av. QP 76.2 66.5 53.1 60.6 47.1 53.9 50.1 51.4 38.4 37.1
Av. T(s) 8.3 7.1 5.5 7.7 5.7 6.8 6.6 6.8 5.5 5.6
5 Av. IT 12.8 11.3 10.8 12.1 10.5 9.4 8.3 8.4 9 8.3
Av. QP 43.6 37.6 34.8 45.5 48.1 39.7 35.7 36.2 46 47.7
Av. T(s) 4.5 3.9 3.6 4.6 4.9 4.5 4.2 4.3 5.4 5.7
10 Av. IT 12.5 11.8 11.5 12 13.3 12.8 12.3 11.9 13.4 13.4
Av. QP 34.7 30 27.7 34.1 49.8 45.1 42.7 41.7 57.2 61.3
Av. T(s) 3.9 3.3 3.1 3.7 5 4.4 4.2 4.2 5.5 6.2
$\bf{n=10}$ $\bf{m=10}$ $\bf{p=5}$
Algo 5 Algo [43]
$\bf{ \pmb{\mathsf{ β}}_k}$ $c$ 0.01 0.05 0.1 0.5 0.9 0.01 0.05 0.1 0.5 0.9
0.01 Av. IT 13.1 11.2 10.6 9.7 6.8 8.1 8.8 7.8 5.8 4.6
Av. QP 137.7 102 95.8 89.8 73.6 81.3 88.3 78.7 62.6 48.8
Av. T(s) 21.6 14.6 13.7 13.5 11.7 12 12.7 11.6 10.4 8.2
0.5 Av. IT 13.1 12.9 12.2 9.9 7.2 8.7 8.8 7.4 6 4.5
Av. QP 81.6 84.5 75.7 66.2 56.4 67.4 69.6 55 47.9 40
Av. T(s) 8.8 9.6 8.8 8.4 7.3 8.8 9.1 7.7 7.3 6.3
1 Av. IT 13.8 13 10.7 10.3 7.1 8.6 7.6 7.4 5.3 4.7
Av. QP 76.2 66.5 53.1 60.6 47.1 53.9 50.1 51.4 38.4 37.1
Av. T(s) 8.3 7.1 5.5 7.7 5.7 6.8 6.6 6.8 5.5 5.6
5 Av. IT 12.8 11.3 10.8 12.1 10.5 9.4 8.3 8.4 9 8.3
Av. QP 43.6 37.6 34.8 45.5 48.1 39.7 35.7 36.2 46 47.7
Av. T(s) 4.5 3.9 3.6 4.6 4.9 4.5 4.2 4.3 5.4 5.7
10 Av. IT 12.5 11.8 11.5 12 13.3 12.8 12.3 11.9 13.4 13.4
Av. QP 34.7 30 27.7 34.1 49.8 45.1 42.7 41.7 57.2 61.3
Av. T(s) 3.9 3.3 3.1 3.7 5 4.4 4.2 4.2 5.5 6.2
Table 2.  Results for Algorithm 5 and Algorithm [43] with $n = 20$, $m = 10$ and $p = 10$.
$\bf{n=20}$ $\bf{m=10}$ $\bf{p=10}$
Algo 5 Algo [43]
$\bf{ \pmb{\mathsf{ β}}_k}$ $c$ 0.01 0.05 0.1 0.5 0.9 0.01 0.05 0.1 0.5 0.9
0.01 Av. IT 13.3 12.9 11.5 10.8 8.8 7.9 8.4 7.5 5.2 4.4
Av. QP 119.7 117.4 90.9 95.3 87.9 97.8 104.2 93.9 64.6 59.4
Av. T(s) 34.2 33.9 25.7 27.5 25.2 16.5 17.7 16.3 12 11.4
0.5 Av. IT 12.6 12.4 11.2 12.3 9.5 8 8.8 8.1 5.3 4.5
Av. QP 71.3 65.5 59.6 71.8 64.1 78.1 93.5 81.6 56.4 47.2
Av. T(s) 17.2 16.7 15 19.5 17.5 12.4 14.6 13.1 10 8.9
1 Av. IT 13.4 13.1 13.1 12.3 10.4 9.6 8.8 8.2 5.2 4.9
Av. QP 64.2 63.6 59.3 59.4 58.5 83.2 75 72.7 50.9 43
Av. T(s) 16.6 16.5 15.5 16.6 16 13.1 11.8 11.5 9 7.8
5 Av. IT 19.5 17.3 16.7 17.2 20.3 9.5 9.3 9.5 7.7 8.1
Av. QP 57.1 45.1 41 47.2 64 45.3 45.7 49.8 42.1 54.3
Av. T(s) 14.1 11.1 10.6 11.9 17.2 6.8 6.9 7.3 6.7 8.6
10 Av. IT 30.1 30 30.2 30.7 33.4 12.7 12.7 11.7 13.5 12.2
Av. QP 59.7 57.7 56.7 59.9 73.1 52.2 52.7 48.1 64.8 71.4
Av. T(s) 15.4 15.2 14.8 15.7 20.5 6.9 6.9 6.4 8.2 9.4
$\bf{n=20}$ $\bf{m=10}$ $\bf{p=10}$
Algo 5 Algo [43]
$\bf{ \pmb{\mathsf{ β}}_k}$ $c$ 0.01 0.05 0.1 0.5 0.9 0.01 0.05 0.1 0.5 0.9
0.01 Av. IT 13.3 12.9 11.5 10.8 8.8 7.9 8.4 7.5 5.2 4.4
Av. QP 119.7 117.4 90.9 95.3 87.9 97.8 104.2 93.9 64.6 59.4
Av. T(s) 34.2 33.9 25.7 27.5 25.2 16.5 17.7 16.3 12 11.4
0.5 Av. IT 12.6 12.4 11.2 12.3 9.5 8 8.8 8.1 5.3 4.5
Av. QP 71.3 65.5 59.6 71.8 64.1 78.1 93.5 81.6 56.4 47.2
Av. T(s) 17.2 16.7 15 19.5 17.5 12.4 14.6 13.1 10 8.9
1 Av. IT 13.4 13.1 13.1 12.3 10.4 9.6 8.8 8.2 5.2 4.9
Av. QP 64.2 63.6 59.3 59.4 58.5 83.2 75 72.7 50.9 43
Av. T(s) 16.6 16.5 15.5 16.6 16 13.1 11.8 11.5 9 7.8
5 Av. IT 19.5 17.3 16.7 17.2 20.3 9.5 9.3 9.5 7.7 8.1
Av. QP 57.1 45.1 41 47.2 64 45.3 45.7 49.8 42.1 54.3
Av. T(s) 14.1 11.1 10.6 11.9 17.2 6.8 6.9 7.3 6.7 8.6
10 Av. IT 30.1 30 30.2 30.7 33.4 12.7 12.7 11.7 13.5 12.2
Av. QP 59.7 57.7 56.7 59.9 73.1 52.2 52.7 48.1 64.8 71.4
Av. T(s) 15.4 15.2 14.8 15.7 20.5 6.9 6.9 6.4 8.2 9.4
[1]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[7]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[10]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[11]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[12]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[13]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[14]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[15]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[16]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (192)
  • HTML views (1134)
  • Cited by (2)

Other articles
by authors

[Back to Top]