October  2019, 15(4): 1921-1936. doi: 10.3934/jimo.2018129

A mean-reverting currency model with floating interest rates in uncertain environment

School of Science, Nanjing University of Science and Technology, Nanjing 210094, China

* Corresponding author: Weiwei Wang

Received  March 2018 Revised  April 2018 Published  August 2018

Currency option is an important risk management tool in the foreign exchange market, which has attracted the attention of many researchers. Unlike the classical stochastic theory, we investigate the valuation of currency option under the assumption that the risk factors are described by uncertain processes. Considering the long-term fluctuations of the exchange rate and the changing of the interest rates from time to time, we propose a mean-reverting uncertain currency model with floating interest rates to simulate the foreign exchange market. Subsequently, European and American currency option pricing formulas for the new currency model are derived and some mathematical properties of the formulas are studied. Finally, some numerical algorithms are designed to calculate the prices of these options.

Citation: Weiwei Wang, Ping Chen. A mean-reverting currency model with floating interest rates in uncertain environment. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1921-1936. doi: 10.3934/jimo.2018129
References:
[1]

F. Black and M. Scholes, The pricing of option and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[2]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Mak., 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[3]

Y. Gao, Existence and uniqueness theorem on uncertain differential equations with local Lipschitz condition, J. Uncertain Syst., 6 (2012), 223-232.   Google Scholar

[4]

R. Gao, Milne method for solving uncertain differential equations, Appl. Math. Comput., 274 (2016), 774-785.  doi: 10.1016/j.amc.2015.11.043.  Google Scholar

[5]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision making under risk, Econometrica, 47 (1979), 263-292.   Google Scholar

[6]

B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. Google Scholar

[7]

B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3-16.   Google Scholar

[8]

B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3-10.   Google Scholar

[9]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. Google Scholar

[10]

B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013), Article 1. doi: 10.1186/2195-5468-1-1.  Google Scholar

[11]

Y. Liu, An analytic method for solving uncertain differential equations, J. Uncertain Syst., 6 (2012), 244-249.   Google Scholar

[12]

Y. Liu, Semi-linear uncertain differential equation with its analytic solution, Inf: Int Interdiscip J., 16 (2013), 889-894.   Google Scholar

[13]

H. LiuH. Ke and W. Fei, Almost sure stability for uncertain differential equation, Fuzzy Optim. Decis. Mak., 13 (2014), 463-473.  doi: 10.1007/s10700-014-9188-y.  Google Scholar

[14]

Y. LiuX. Chen and D. Ralescu, Uncertain currency model and currency option pricing, Int. J. Intell. Syst., 30 (2015), 40-51.  doi: 10.1002/int.21680.  Google Scholar

[15]

Y. Sheng and C. Wang, Stability in the p-th moment for uncertain differential equation, J. Intell. Fuzzy Syst., 26 (2014), 1263-1271.   Google Scholar

[16]

Y. Shen and K. Yao, A mean-reverting currency model in an uncertain environment, Soft Comput., 20 (2016), 4131-4138.  doi: 10.1007/s00500-015-1748-8.  Google Scholar

[17]

Y. Sheng and J. Gao, Exponential stability of uncertain differential equation, Soft Comput., 20 (2016), 3673-3678.  doi: 10.1007/s00500-015-1727-0.  Google Scholar

[18]

Z. Wang, Analytic solution for a general type of uncertain differential equation, Inf: Int Interdiscip J., 16 (2013), 1003-1010.   Google Scholar

[19]

X. Wang and Y. Ning, An uncertain currency model with floating interest rates, Soft Comput., 21 (2017), 6739-6754.  doi: 10.1007/s00500-016-2224-9.  Google Scholar

[20]

X. Yang and D. Ralescu, Adams method for solving uncertain differential equation, Appl. Math. Comput., 270 (2015), 993-1003.  doi: 10.1016/j.amc.2015.08.109.  Google Scholar

[21]

X. Yang and Y. Shen, Runge-Kutta method for solving uncertain differential equations, J. Uncertain. Anal. Appl., 3 (2015), Article 17. doi: 10.1186/s40467-015-0038-4.  Google Scholar

[22]

K. Yao, A type of uncertain differential equations with analytic solution, J. Uncertain. Anal. Appl., 1 (2013), Article 8. doi: 10.1186/2195-5468-1-8.  Google Scholar

[23]

K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), Article 2. doi: 10.1186/2195-5468-1-2.  Google Scholar

[24]

K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim. Decis. Mak., 14 (2015), 399-424.  doi: 10.1007/s10700-015-9211-y.  Google Scholar

[25]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Syst., 25 (2013), 825-832.   Google Scholar

[26]

K. YaoJ. Gao and Y. Gao, Some stability theorems of uncertain differential equation, Fuzzy Optim. Decis. Mak., 12 (2013), 3-13.  doi: 10.1007/s10700-012-9139-4.  Google Scholar

[27]

K. YaoH. Ke and Y. Sheng, Stability in mean for uncertain differential equation, Fuzzy Optim. Decis. Mak., 14 (2015), 365-379.  doi: 10.1007/s10700-014-9204-2.  Google Scholar

show all references

References:
[1]

F. Black and M. Scholes, The pricing of option and corporate liabilities, J. Polit. Econ., 81 (1973), 637-654.  doi: 10.1086/260062.  Google Scholar

[2]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optim. Decis. Mak., 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[3]

Y. Gao, Existence and uniqueness theorem on uncertain differential equations with local Lipschitz condition, J. Uncertain Syst., 6 (2012), 223-232.   Google Scholar

[4]

R. Gao, Milne method for solving uncertain differential equations, Appl. Math. Comput., 274 (2016), 774-785.  doi: 10.1016/j.amc.2015.11.043.  Google Scholar

[5]

D. Kahneman and A. Tversky, Prospect theory: An analysis of decision making under risk, Econometrica, 47 (1979), 263-292.   Google Scholar

[6]

B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. Google Scholar

[7]

B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3-16.   Google Scholar

[8]

B. Liu, Some research problems in uncertainty theory, J. Uncertain Syst., 3 (2009), 3-10.   Google Scholar

[9]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. Google Scholar

[10]

B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013), Article 1. doi: 10.1186/2195-5468-1-1.  Google Scholar

[11]

Y. Liu, An analytic method for solving uncertain differential equations, J. Uncertain Syst., 6 (2012), 244-249.   Google Scholar

[12]

Y. Liu, Semi-linear uncertain differential equation with its analytic solution, Inf: Int Interdiscip J., 16 (2013), 889-894.   Google Scholar

[13]

H. LiuH. Ke and W. Fei, Almost sure stability for uncertain differential equation, Fuzzy Optim. Decis. Mak., 13 (2014), 463-473.  doi: 10.1007/s10700-014-9188-y.  Google Scholar

[14]

Y. LiuX. Chen and D. Ralescu, Uncertain currency model and currency option pricing, Int. J. Intell. Syst., 30 (2015), 40-51.  doi: 10.1002/int.21680.  Google Scholar

[15]

Y. Sheng and C. Wang, Stability in the p-th moment for uncertain differential equation, J. Intell. Fuzzy Syst., 26 (2014), 1263-1271.   Google Scholar

[16]

Y. Shen and K. Yao, A mean-reverting currency model in an uncertain environment, Soft Comput., 20 (2016), 4131-4138.  doi: 10.1007/s00500-015-1748-8.  Google Scholar

[17]

Y. Sheng and J. Gao, Exponential stability of uncertain differential equation, Soft Comput., 20 (2016), 3673-3678.  doi: 10.1007/s00500-015-1727-0.  Google Scholar

[18]

Z. Wang, Analytic solution for a general type of uncertain differential equation, Inf: Int Interdiscip J., 16 (2013), 1003-1010.   Google Scholar

[19]

X. Wang and Y. Ning, An uncertain currency model with floating interest rates, Soft Comput., 21 (2017), 6739-6754.  doi: 10.1007/s00500-016-2224-9.  Google Scholar

[20]

X. Yang and D. Ralescu, Adams method for solving uncertain differential equation, Appl. Math. Comput., 270 (2015), 993-1003.  doi: 10.1016/j.amc.2015.08.109.  Google Scholar

[21]

X. Yang and Y. Shen, Runge-Kutta method for solving uncertain differential equations, J. Uncertain. Anal. Appl., 3 (2015), Article 17. doi: 10.1186/s40467-015-0038-4.  Google Scholar

[22]

K. Yao, A type of uncertain differential equations with analytic solution, J. Uncertain. Anal. Appl., 1 (2013), Article 8. doi: 10.1186/2195-5468-1-8.  Google Scholar

[23]

K. Yao, Extreme values and integral of solution of uncertain differential equation, J. Uncertain. Anal. Appl., 1 (2013), Article 2. doi: 10.1186/2195-5468-1-2.  Google Scholar

[24]

K. Yao, Uncertain contour process and its application in stock model with floating interest rate, Fuzzy Optim. Decis. Mak., 14 (2015), 399-424.  doi: 10.1007/s10700-015-9211-y.  Google Scholar

[25]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, J. Intell. Fuzzy Syst., 25 (2013), 825-832.   Google Scholar

[26]

K. YaoJ. Gao and Y. Gao, Some stability theorems of uncertain differential equation, Fuzzy Optim. Decis. Mak., 12 (2013), 3-13.  doi: 10.1007/s10700-012-9139-4.  Google Scholar

[27]

K. YaoH. Ke and Y. Sheng, Stability in mean for uncertain differential equation, Fuzzy Optim. Decis. Mak., 14 (2015), 365-379.  doi: 10.1007/s10700-014-9204-2.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[3]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[4]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[7]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[15]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[16]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[19]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[20]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (113)
  • HTML views (1049)
  • Cited by (0)

Other articles
by authors

[Back to Top]