October  2019, 15(4): 1937-1953. doi: 10.3934/jimo.2018130

Optimal investment and consumption in the market with jump risk and capital gains tax

1. 

College of Finance and Statistics, Hunan University, Changsha 410079, China

2. 

School of Management, Zhejiang University, Hangzhou 310085, China

* Corresponding author: Weidong Xu. Tel.: +86-0571-88206867

Received  March 2018 Revised  May 2018 Published  August 2018

This paper investigates the problem of dynamic investment and consumption in a market, where a risky asset evolves with jumps and capital gains are taxed. In addition, the investor's behavior of tax evasion is taken into account, and tax evasion is subject to penalty when it is uncovered by audits. Using dynamic programming approach, we derive an analytical solution for an investor with the CRRA utility. We find the following: (1) jumps in the risky asset do not affect the optimal tax evasion strategy; (2) jump risk lessens the optimal fraction of wealth in the risky asset; (3) tax evasion can be reduced by increasing the fine and/or the frequency of tax audits; (4) the effects of the jumps, audits and penalty on the optimal consumption are determined by the degree of risk aversion of the investor.

Citation: Yong Ma, Shiping Shan, Weidong Xu. Optimal investment and consumption in the market with jump risk and capital gains tax. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1937-1953. doi: 10.3934/jimo.2018130
References:
[1]

Y. Ait-SahaliaJ. Cacho-Diaz and R. J. Laeven, Modeling financial contagion using mutually exciting jump processes, Journal of Financial Economics, 117 (2015), 585-606.   Google Scholar

[2]

G. BakshiC. Cao and Z. Chen, Empirical performance of alternative option pricing models, Journal of Finance, 52 (1997), 2003-2049.  doi: 10.1111/j.1540-6261.1997.tb02749.x.  Google Scholar

[3]

O. E. Barndorff-Nielsen and N. Shephard, Econometrics of testing for jumps in financial economics using bipower variation, Journal of Financial Econometrics, 4 (2006), 1-30.   Google Scholar

[4]

D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, Review of Financial Studies, 9 (1996), 69-107.  doi: 10.1093/rfs/9.1.69.  Google Scholar

[5]

J. CaiX. Chen and M. Dai, Portfolio selection with capital gains tax, recursive utility, and regime switching, Management Science, 64 (2017), 2308-2324.   Google Scholar

[6]

R. M. DammonC. S. Spatt and H. H. Zhang, Optimal consumption and investment with capital gains taxes, Review of Financial Studies, 14 (2001), 583-616.   Google Scholar

[7]

R. M. DammonC. S. Spatt and H. H. Zhang, Optimal asset location and allocation with taxable and tax-deferred investing, Journal of Finance, 59 (2004), 999-1037.   Google Scholar

[8]

M. DaiH. LiuC. Yang and Y. Zhong, Optimal tax timing with asymmetric long-term/short-term capital gains tax, Review of Financial Studies, 28 (2015), 2687-2721.  doi: 10.1093/rfs/hhv024.  Google Scholar

[9]

S. R. Das and R. Uppal, Systemic risk and international portfolio choice, Journal of Finance, 59 (2004), 2809-2834.   Google Scholar

[10]

B. Eraker, Do stock prices and volatility jump? Reconciling evidence from spot and option prices, Journal of Finance, 59 (2004), 1367-1403.  doi: 10.1111/j.1540-6261.2004.00666.x.  Google Scholar

[11]

B. ErakerM. Johannes and N. Polson, The impact of jumps in volatility and returns, Journal of Finance, 58 (2003), 1269-1300.  doi: 10.1111/1540-6261.00566.  Google Scholar

[12]

M. F. GallmeyerR. Kaniel and S. Tompaidis, Tax management strategies with multiple risky assets, Journal of Financial Economics, 80 (2006), 243-291.   Google Scholar

[13]

Y. Hong and X. Jin, Semi-analytical solutions for dynamic portfolio choice in jump-diffusion models and the optimal bond-stock mix, European Journal of Operational Research, 265 (2018), 389-398.  doi: 10.1016/j.ejor.2017.08.010.  Google Scholar

[14]

S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.   Google Scholar

[15]

S. S. Lee and P. A. Mykland, Jumps in financial markets: A new nonparametric test and jump dynamics, Review of Financial Studies, 21 (2007), 2535-2563.   Google Scholar

[16]

R. Levaggi and F. Menoncin, Optimal dynamic tax evasion: A portfolio approach, Journal of Economic Behavior and Organization, 124 (2016), 115-129.   Google Scholar

[17]

J. LiuF. A. Longstaff and J. Pan, Dynamic asset allocation with event risk, Journal of Finance, 58 (2003), 231-259.   Google Scholar

[18]

M. Marekwica, Optimal tax-timing and asset allocation when tax rebates on capital losses are limited, Journal of Banking and Finance, 36 (2012), 2048-2063.   Google Scholar

[19]

R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.  doi: 10.1016/0304-405X(76)90022-2.  Google Scholar

[20]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[21]

H. Nagai, H-J-B equations of optimal consumption-investment and verification theorems, Applied Mathematics and Optimization, 71 (2015), 279-311.  doi: 10.1007/s00245-014-9258-0.  Google Scholar

[22]

J. Pan, The jump-risk premia implicit in options: Evidence from an integrated time-series study, Journal of Financial Economics, 63 (2002), 3-50.  doi: 10.1016/S0304-405X(01)00088-5.  Google Scholar

[23]

L. C. G. Rogers, Optimal Investment, Springer-Verlag, Berlin, 2013. doi: 10.1007/978-3-642-35202-7.  Google Scholar

[24]

I. B. TaharH. M. Soner and N. Touzi, The dynamic programming equation for the problem of optimal investment under capital gains taxes, SIAM Journal on Control and Optimization, 46 (2007), 1779-1801.  doi: 10.1137/050646044.  Google Scholar

[25]

I. B. TaharH. M. Soner and N. Touzi, Merton problem with taxes: Characterization, computation, and approximation, SIAM Journal on Financial Mathematics, 1 (2010), 366-395.  doi: 10.1137/080742178.  Google Scholar

[26]

G. Tauchen and H. Zhou, Realized jumps on financial markets and predicting credit spreads, Journal of Econometrics, 160 (2011), 102-118.  doi: 10.1016/j.jeconom.2010.03.023.  Google Scholar

[27]

L. Wu, Jumps and dynamic asset allocation, Review of Quantitative Finance and Accounting, 20 (2003), 207-243.   Google Scholar

show all references

References:
[1]

Y. Ait-SahaliaJ. Cacho-Diaz and R. J. Laeven, Modeling financial contagion using mutually exciting jump processes, Journal of Financial Economics, 117 (2015), 585-606.   Google Scholar

[2]

G. BakshiC. Cao and Z. Chen, Empirical performance of alternative option pricing models, Journal of Finance, 52 (1997), 2003-2049.  doi: 10.1111/j.1540-6261.1997.tb02749.x.  Google Scholar

[3]

O. E. Barndorff-Nielsen and N. Shephard, Econometrics of testing for jumps in financial economics using bipower variation, Journal of Financial Econometrics, 4 (2006), 1-30.   Google Scholar

[4]

D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, Review of Financial Studies, 9 (1996), 69-107.  doi: 10.1093/rfs/9.1.69.  Google Scholar

[5]

J. CaiX. Chen and M. Dai, Portfolio selection with capital gains tax, recursive utility, and regime switching, Management Science, 64 (2017), 2308-2324.   Google Scholar

[6]

R. M. DammonC. S. Spatt and H. H. Zhang, Optimal consumption and investment with capital gains taxes, Review of Financial Studies, 14 (2001), 583-616.   Google Scholar

[7]

R. M. DammonC. S. Spatt and H. H. Zhang, Optimal asset location and allocation with taxable and tax-deferred investing, Journal of Finance, 59 (2004), 999-1037.   Google Scholar

[8]

M. DaiH. LiuC. Yang and Y. Zhong, Optimal tax timing with asymmetric long-term/short-term capital gains tax, Review of Financial Studies, 28 (2015), 2687-2721.  doi: 10.1093/rfs/hhv024.  Google Scholar

[9]

S. R. Das and R. Uppal, Systemic risk and international portfolio choice, Journal of Finance, 59 (2004), 2809-2834.   Google Scholar

[10]

B. Eraker, Do stock prices and volatility jump? Reconciling evidence from spot and option prices, Journal of Finance, 59 (2004), 1367-1403.  doi: 10.1111/j.1540-6261.2004.00666.x.  Google Scholar

[11]

B. ErakerM. Johannes and N. Polson, The impact of jumps in volatility and returns, Journal of Finance, 58 (2003), 1269-1300.  doi: 10.1111/1540-6261.00566.  Google Scholar

[12]

M. F. GallmeyerR. Kaniel and S. Tompaidis, Tax management strategies with multiple risky assets, Journal of Financial Economics, 80 (2006), 243-291.   Google Scholar

[13]

Y. Hong and X. Jin, Semi-analytical solutions for dynamic portfolio choice in jump-diffusion models and the optimal bond-stock mix, European Journal of Operational Research, 265 (2018), 389-398.  doi: 10.1016/j.ejor.2017.08.010.  Google Scholar

[14]

S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.   Google Scholar

[15]

S. S. Lee and P. A. Mykland, Jumps in financial markets: A new nonparametric test and jump dynamics, Review of Financial Studies, 21 (2007), 2535-2563.   Google Scholar

[16]

R. Levaggi and F. Menoncin, Optimal dynamic tax evasion: A portfolio approach, Journal of Economic Behavior and Organization, 124 (2016), 115-129.   Google Scholar

[17]

J. LiuF. A. Longstaff and J. Pan, Dynamic asset allocation with event risk, Journal of Finance, 58 (2003), 231-259.   Google Scholar

[18]

M. Marekwica, Optimal tax-timing and asset allocation when tax rebates on capital losses are limited, Journal of Banking and Finance, 36 (2012), 2048-2063.   Google Scholar

[19]

R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.  doi: 10.1016/0304-405X(76)90022-2.  Google Scholar

[20]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.  Google Scholar

[21]

H. Nagai, H-J-B equations of optimal consumption-investment and verification theorems, Applied Mathematics and Optimization, 71 (2015), 279-311.  doi: 10.1007/s00245-014-9258-0.  Google Scholar

[22]

J. Pan, The jump-risk premia implicit in options: Evidence from an integrated time-series study, Journal of Financial Economics, 63 (2002), 3-50.  doi: 10.1016/S0304-405X(01)00088-5.  Google Scholar

[23]

L. C. G. Rogers, Optimal Investment, Springer-Verlag, Berlin, 2013. doi: 10.1007/978-3-642-35202-7.  Google Scholar

[24]

I. B. TaharH. M. Soner and N. Touzi, The dynamic programming equation for the problem of optimal investment under capital gains taxes, SIAM Journal on Control and Optimization, 46 (2007), 1779-1801.  doi: 10.1137/050646044.  Google Scholar

[25]

I. B. TaharH. M. Soner and N. Touzi, Merton problem with taxes: Characterization, computation, and approximation, SIAM Journal on Financial Mathematics, 1 (2010), 366-395.  doi: 10.1137/080742178.  Google Scholar

[26]

G. Tauchen and H. Zhou, Realized jumps on financial markets and predicting credit spreads, Journal of Econometrics, 160 (2011), 102-118.  doi: 10.1016/j.jeconom.2010.03.023.  Google Scholar

[27]

L. Wu, Jumps and dynamic asset allocation, Review of Quantitative Finance and Accounting, 20 (2003), 207-243.   Google Scholar

Figure 1.  Dynamic optimal investment and consumption
Figure 2.  The effect of jump intensity of asset price on optimal investment and consumption
Figure 3.  The effect of jump mean of asset price on optimal investment and consumption
Figure 4.  The effect of tax policy on optimal investment and consumption ($\gamma>1$)
Table 1.  The values of the parameters in the base case
ParameterValueParameterValue
Current time$t=0$Terminal time$T=20$
Expected return$\mu=0.08$Volatility$\sigma=0.2$
Riskless interest rate$r=0.04$Risk aversion coefficient$\gamma=2.5$
Discount factor$\rho=0.04$Relative weight$\chi=1$
Audit intensity$\lambda_2=0.1$Punishment intensity$\alpha=0.08$
Tax rate on riskless asset$\tau_G=0.27$Tax rate on risky asset$\tau=0.235$
Jump intensity$\lambda_1=0.15$Log jump mean$\mu_J=0$
Jump volatility$\sigma_J=0.5$
ParameterValueParameterValue
Current time$t=0$Terminal time$T=20$
Expected return$\mu=0.08$Volatility$\sigma=0.2$
Riskless interest rate$r=0.04$Risk aversion coefficient$\gamma=2.5$
Discount factor$\rho=0.04$Relative weight$\chi=1$
Audit intensity$\lambda_2=0.1$Punishment intensity$\alpha=0.08$
Tax rate on riskless asset$\tau_G=0.27$Tax rate on risky asset$\tau=0.235$
Jump intensity$\lambda_1=0.15$Log jump mean$\mu_J=0$
Jump volatility$\sigma_J=0.5$
[1]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[2]

Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136

[3]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[4]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[6]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[7]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[8]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[9]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

[10]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[11]

Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021002

[12]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[13]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[14]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[15]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[16]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[17]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[18]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[19]

Hong Fu, Mingwu Liu, Bo Chen. Supplier's investment in manufacturer's quality improvement with equity holding. Journal of Industrial & Management Optimization, 2021, 17 (2) : 649-668. doi: 10.3934/jimo.2019127

[20]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (295)
  • HTML views (1220)
  • Cited by (1)

Other articles
by authors

[Back to Top]