October  2019, 15(4): 1995-2008. doi: 10.3934/jimo.2018133

Extreme values problem of uncertain heat equation

School of Information Technology & Management, University of International, Business & Economics, Beijing 100029, China

* Corresponding author: Yaodong Ni

Received  March 2018 Revised  April 2018 Published  August 2018

Fund Project: The second author is supported by National Natural Science Foundation of China (Grant No. 71471038).

Uncertain heat equation is a class of uncertain partial differential equations involving Liu processes. This paper first gives the uncertainty distributions and the inverse uncertainty distributions of extreme values of solutions for uncertain heat equations. Numerical methods are designed to gain the inverse uncertainty distributions of extreme values of solutions.

Citation: Xiangfeng Yang, Yaodong Ni. Extreme values problem of uncertain heat equation. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1995-2008. doi: 10.3934/jimo.2018133
References:
[1]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[2]

X. Chen and J. Gao, Uncertain term structure model of interest rate, Soft Computing, 17 (2013), 597-604.  doi: 10.1007/s00500-012-0927-0.  Google Scholar

[3]

B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. Google Scholar

[4]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[5]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.  doi: 10.1007/978-3-662-44354-5.  Google Scholar

[6]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. Google Scholar

[7]

B. Liu, Toward uncertain finance theory, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 1. doi: 10.1186/2195-5468-1-1.  Google Scholar

[8]

B. Liu, Uncertainty distribution and independence of uncertain processes, Fuzzy Optimization and Decision Making, 13 (2014), 259-271.  doi: 10.1007/s10700-014-9181-5.  Google Scholar

[9]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.  doi: 10.1002/int.21680.  Google Scholar

[10]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 17. doi: 10.1186/2195-5468-1-17.  Google Scholar

[11]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.  doi: 10.1109/TFUZZ.2015.2486809.  Google Scholar

[12]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optimization and Decision Making, 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[13]

X. Yang and Y. Ni, Existence and uniqueness theorem for uncertain heat equation, Journal of Ambient Intelligence and Humanized Computing, 8 (2017), 717-725.  doi: 10.1007/s12652-017-0479-3.  Google Scholar

[14]

X. Yang, A numerical method for solving uncertain heat equation, Applied Mathematics and Computation, 329 (2018), 92-104.  doi: 10.1016/j.amc.2018.01.055.  Google Scholar

[15]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal of Intelligent & Fuzzy Systems, 25 (2013), 825-832.   Google Scholar

[16]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

show all references

References:
[1]

X. Chen and B. Liu, Existence and uniqueness theorem for uncertain differential equations, Fuzzy Optimization and Decision Making, 9 (2010), 69-81.  doi: 10.1007/s10700-010-9073-2.  Google Scholar

[2]

X. Chen and J. Gao, Uncertain term structure model of interest rate, Soft Computing, 17 (2013), 597-604.  doi: 10.1007/s00500-012-0927-0.  Google Scholar

[3]

B. Liu, Uncertainty Theory, 2nd edition, Springer-Verlag, Berlin, 2007. Google Scholar

[4]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16.   Google Scholar

[5]

B. Liu, Some research problems in uncertainty theory, Journal of Uncertain Systems, 3 (2009), 3-10.  doi: 10.1007/978-3-662-44354-5.  Google Scholar

[6]

B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010. Google Scholar

[7]

B. Liu, Toward uncertain finance theory, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 1. doi: 10.1186/2195-5468-1-1.  Google Scholar

[8]

B. Liu, Uncertainty distribution and independence of uncertain processes, Fuzzy Optimization and Decision Making, 13 (2014), 259-271.  doi: 10.1007/s10700-014-9181-5.  Google Scholar

[9]

Y. LiuX. Chen and D. A. Ralescu, Uncertain currency model and currency option pricing, International Journal of Intelligent Systems, 30 (2015), 40-51.  doi: 10.1002/int.21680.  Google Scholar

[10]

X. Yang and J. Gao, Uncertain differential games with application to capitalism, Journal of Uncertainty Analysis and Applications, 1 (2013), Article 17. doi: 10.1186/2195-5468-1-17.  Google Scholar

[11]

X. Yang and J. Gao, Linear-quadratic uncertain differential games with application to resource extraction problem, IEEE Transactions on Fuzzy Systems, 24 (2016), 819-826.  doi: 10.1109/TFUZZ.2015.2486809.  Google Scholar

[12]

X. Yang and K. Yao, Uncertain partial differential equation with application to heat conduction, Fuzzy Optimization and Decision Making, 16 (2017), 379-403.  doi: 10.1007/s10700-016-9253-9.  Google Scholar

[13]

X. Yang and Y. Ni, Existence and uniqueness theorem for uncertain heat equation, Journal of Ambient Intelligence and Humanized Computing, 8 (2017), 717-725.  doi: 10.1007/s12652-017-0479-3.  Google Scholar

[14]

X. Yang, A numerical method for solving uncertain heat equation, Applied Mathematics and Computation, 329 (2018), 92-104.  doi: 10.1016/j.amc.2018.01.055.  Google Scholar

[15]

K. Yao and X. Chen, A numerical method for solving uncertain differential equations, Journal of Intelligent & Fuzzy Systems, 25 (2013), 825-832.   Google Scholar

[16]

Y. Zhu, Uncertain optimal control with application to a portfolio selection model, Cybernetics and Systems, 41 (2010), 535-547.   Google Scholar

Figure 1.  Inverse Uncertainty Distributions of Extreme Values in Example 4.1
Figure 2.  Inverse Uncertainty Distributions of Extreme Values in Example 4.2
[1]

Samira Shahsavari, Saeed Ketabchi. The proximal methods for solving absolute value equation. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 449-460. doi: 10.3934/naco.2020037

[2]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[3]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021019

[4]

Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021032

[5]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[6]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[7]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[8]

Enkhbat Rentsen, N. Tungalag, J. Enkhbayar, O. Battogtokh, L. Enkhtuvshin. Application of survival theory in Mining industry. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 443-448. doi: 10.3934/naco.2020036

[9]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[11]

Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021025

[12]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[13]

José Antonio Carrillo, Martin Parisot, Zuzanna Szymańska. Mathematical modelling of collagen fibres rearrangement during the tendon healing process. Kinetic & Related Models, 2021, 14 (2) : 283-301. doi: 10.3934/krm.2021005

[14]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027

[15]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[16]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[17]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[18]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[19]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[20]

Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021076

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (191)
  • HTML views (937)
  • Cited by (4)

Other articles
by authors

[Back to Top]