January  2020, 16(1): 37-53. doi: 10.3934/jimo.2018139

A new class of global fractional-order projective dynamical system with an application

1. 

Department of Mathematics, Luoyang Normal University, Luoyang, Henan 471934, China

2. 

Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, China

* Corresponding author: Nan-jing Huang

Received  October 2016 Revised  September 2017 Published  September 2018

Fund Project: This work was supported by the National Natural Science Foundation of China (11471230, 11671282) and the Program for Science Technology Innovation Research Team in Universities of Henan Province (18IRTSHN014).

In this article, some existence and uniqueness of solutions for a new class of global fractional-order projective dynamical system with delay and perturbation are proved by employing the Krasnoselskii fixed point theorem and the Banach fixed point theorem. Moreover, an approximating algorithm is also provided to find a solution of the global fractional-order projective dynamical system. Finally, an application to the idealized traveler information systems for day-to-day adjustments processes and a numerical example are given.

Citation: Zeng-bao Wu, Yun-zhi Zou, Nan-jing Huang. A new class of global fractional-order projective dynamical system with an application. Journal of Industrial & Management Optimization, 2020, 16 (1) : 37-53. doi: 10.3934/jimo.2018139
References:
[1]

W. M. Ahmad and R. El-Khazali, Fractional-order dynamical models of love, Chaos Solit. Fract., 33 (2007), 1367-1375.  doi: 10.1016/j.chaos.2006.01.098.  Google Scholar

[2]

R. P. AgarwalY. Zhou and Y. Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095-1100.  doi: 10.1016/j.camwa.2009.05.010.  Google Scholar

[3]

S. Abbas, Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron J. Differential Equations, 2011 (2011), 1-11.   Google Scholar

[4]

S. Bhalekar and V. Daftardar-geji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1 (2011), 1-9.   Google Scholar

[5]

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.  Google Scholar

[6]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22.  doi: 10.1023/A:1016592219341.  Google Scholar

[7]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional adams method, Numer. Algorithms, 36 (2004), 31-52.  doi: 10.1023/B:NUMA.0000027736.85078.be.  Google Scholar

[8]

K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[9]

W. H. DengC. P. Li and J. H. Lu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 48 (2007), 409-416.  doi: 10.1007/s11071-006-9094-0.  Google Scholar

[10]

H. Dia and S. Panwai, Modelling drivers' compliance and rout choice behaviour in response to travel information, Nonlinear Dynam., 49 (2007), 493-509.   Google Scholar

[11]

K. Ding and N. J. Huang, A new interval projection neural networks for solving interval quadratic program, Chaos Solitons Fractals, 35 (2008), 718-725.  doi: 10.1016/j.chaos.2006.05.037.  Google Scholar

[12]

T. L. FrieszD. H. BernsteinN. J. MehtaR. L. Tobin and S. Ganjlizadeh, Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42 (1994), 1120-1136.  doi: 10.1287/opre.42.6.1120.  Google Scholar

[13]

T. L. FrieszZ. G. Suo and D. H. Bernstein, A dynamic disequilibrium interregional commodity flow model, Transport. Res. B, 32 (1998), 467-483.  doi: 10.1016/S0191-2615(98)00012-5.  Google Scholar

[14]

Y. Jalilian and R. Jalilian, Existence of solution for delay fractional differential equations, Mediterr. J. Math., 10 (2013), 1731-1747.  doi: 10.1007/s00009-013-0281-1.  Google Scholar

[15]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[16] D. Kinderlehrer and G. Stampcchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.   Google Scholar
[17]

M. A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10 (1958), 345-409.   Google Scholar

[18]

W. H. LinA. Kulkarni and P. Mirchandani, Short-time arterial travel time prediction for advanced traveler infromation systems, J. Intel. Transportation Sys., 8 (2004), 143-154.   Google Scholar

[19]

C. P. Li and F. R. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Special Topics, 193 (2011), 27-47.  doi: 10.1140/epjst/e2011-01379-1.  Google Scholar

[20]

T. MaraabaF. Jarad and D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives, Sci. China Ser. A, 51 (2008), 1775-1786.  doi: 10.1007/s11425-008-0068-1.  Google Scholar

[21]

T. MaraabaD. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11pp.  doi: 10.1063/1.2970709.  Google Scholar

[22]

M. L. MorgadoN. J. Ford and P. M. Lima, Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., 252 (2013), 159-168.  doi: 10.1016/j.cam.2012.06.034.  Google Scholar

[23]

B. P. Moghaddam and Z. S. Mostaghim, A numerical method based on finite difference for solving fractional delay differential equations, J. Taibah Univ. Sci., 7 (2013), 120-127.  doi: 10.1016/j.jtusci.2013.07.002.  Google Scholar

[24] A. Nagumey and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Springer, New York, 1996.  doi: 10.1007/978-1-4615-2301-7.  Google Scholar
[25]

N. Ozalp and I. Koca, A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Difference Equat., 2012 (2012), 7pp.  doi: 10.1186/1687-1847-2012-189.  Google Scholar

[26] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.   Google Scholar
[27]

S. B. SkaarA. N. Michel and R. K. Miller, Stability of viscoelastic control systems, IEEE Trans. Automat. Control, 33 (1988), 348-357.  doi: 10.1109/9.192189.  Google Scholar

[28]

W. Y. Szeto and H. K. Lo, The impact of advanced traveler information services on travel time and schedule delay costs, J. Intel. Transportation Sys., 9 (2007), 47-55.  doi: 10.1080/15472450590916840.  Google Scholar

[29]

L. SongS. Y. Xu and J. Y. Yang, Dynamical models of happiness with fractional order, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 616-628.  doi: 10.1016/j.cnsns.2009.04.029.  Google Scholar

[30]

P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.  doi: 10.1115/1.3167615.  Google Scholar

[31]

Z. Wang, A numerical method for delayed fractional-order differential equations, J. Appl. Math. , 2013 (2013), Article ID 256071, 7 pages.  Google Scholar

[32]

X. K. WuZ. B. Wu and Y. Z. Zou, Existence, uniqueness and stability for a class of interval projective dynamical systems, Comm. Appl. Nonlinear Anal., 20 (2013), 81-94.   Google Scholar

[33]

Z. B. Wu and Y. Z. Zou, Stability analysis of two related projective dynamical systems in Hilbert spaces, Nonlinear Anal. Forum, 19 (2014), 37-51.   Google Scholar

[34]

Z. B. Wu and Y. Z. Zou, Global fraction-order projective dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2811-2819.  doi: 10.1016/j.cnsns.2014.01.007.  Google Scholar

[35]

Z. B. WuY. Z. Zou and N. J. Huang, A system of fractional-order interval projection neural networks, J. Comput. Appl. Math., 294 (2016), 389-402.  doi: 10.1016/j.cam.2015.09.007.  Google Scholar

[36]

Z. B. WuY. Z. Zou and N. J. Huang, A class of global fractional-order projective dynamical systems involving set-valued perturbations, Appl. Math. Comput., 277 (2016), 23-33.  doi: 10.1016/j.amc.2015.12.033.  Google Scholar

[37]

Z. B. WuJ. D. Li and N. J. Huang, A new system of global fractional-order interval implicit projection neural networks, Neurocomputing, 282 (2018), 111-121.   Google Scholar

[38]

Z. B. WuC. Min and N. J. Huang, On a system of fuzzy fractional differential inclusions with projection operators, Fuzzy Sets Syst., 347 (2018), 70-88.  doi: 10.1016/j.fss.2018.01.005.  Google Scholar

[39]

Y. S. Xia and T. L. Vincent, On the stability of global projected dynamical systems, J. Optim. Theory Appl., 106 (2000), 129-150.  doi: 10.1023/A:1004611224835.  Google Scholar

[40]

Y. S. Xia, Further results on global convergence and stability of global projected dynamical systems, J. Optim. Theory Appl., 122 (2004), 627-649.  doi: 10.1023/B:JOTA.0000042598.21226.af.  Google Scholar

[41]

Z. H. Yang and J. D. Cao, Initial value problems for arbitrary order fractional differential equations with delay, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2993-3005.  doi: 10.1016/j.cnsns.2013.03.006.  Google Scholar

[42]

D. Zhang and A. Nagurney, On the stability of projected dynamical systems, J. Optim. Theory Appl., 85 (1995), 97-124.  doi: 10.1007/BF02192301.  Google Scholar

[43]

X. M. Zhao and G. Orosz, Nonlinear day-to-day traffic dynamics with driver experience delay: Modeling, stability and bifurcation analysis, Phys. D, 275 (2014), 54-66.  doi: 10.1016/j.physd.2014.02.005.  Google Scholar

[44]

Y. ZhouF. Jiao and J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., 71 (2009), 3249-3256.  doi: 10.1016/j.na.2009.01.202.  Google Scholar

[45]

Y. Z. Zou, X. Li, N. J. Huang and C. Y. Sun, Global dynamical systems involving generalized $f$-projection operators and set-valued perturbation in Banach spaces, J. Appl. Math. , 2012 (2012), Article ID 682465, 12 pages.  Google Scholar

[46]

Y. Z. Zou and C. Y. Sun, Equilibrium points for two related projective dynamical systems, Comm. Appl. Nonlinear Anal., 19 (2012), 111-119.   Google Scholar

[47]

Y. Z. ZouX. K. WuW. B. Zhang and C. Y. Sun, An iterative method for a class of generalized global dynamical system involving fuzzy mappings in Hilbert spaces, Lecture Notes in Commput. Sci., 7666 (2012), 44-51.  doi: 10.1007/978-3-642-34478-7_6.  Google Scholar

show all references

References:
[1]

W. M. Ahmad and R. El-Khazali, Fractional-order dynamical models of love, Chaos Solit. Fract., 33 (2007), 1367-1375.  doi: 10.1016/j.chaos.2006.01.098.  Google Scholar

[2]

R. P. AgarwalY. Zhou and Y. Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095-1100.  doi: 10.1016/j.camwa.2009.05.010.  Google Scholar

[3]

S. Abbas, Existence of solutions to fractional order ordinary and delay differential equations and applications, Electron J. Differential Equations, 2011 (2011), 1-11.   Google Scholar

[4]

S. Bhalekar and V. Daftardar-geji, A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order, J. Fract. Calc. Appl., 1 (2011), 1-9.   Google Scholar

[5]

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.  Google Scholar

[6]

K. DiethelmN. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dynam., 29 (2002), 3-22.  doi: 10.1023/A:1016592219341.  Google Scholar

[7]

K. DiethelmN. J. Ford and A. D. Freed, Detailed error analysis for a fractional adams method, Numer. Algorithms, 36 (2004), 31-52.  doi: 10.1023/B:NUMA.0000027736.85078.be.  Google Scholar

[8]

K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.  Google Scholar

[9]

W. H. DengC. P. Li and J. H. Lu, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dynam., 48 (2007), 409-416.  doi: 10.1007/s11071-006-9094-0.  Google Scholar

[10]

H. Dia and S. Panwai, Modelling drivers' compliance and rout choice behaviour in response to travel information, Nonlinear Dynam., 49 (2007), 493-509.   Google Scholar

[11]

K. Ding and N. J. Huang, A new interval projection neural networks for solving interval quadratic program, Chaos Solitons Fractals, 35 (2008), 718-725.  doi: 10.1016/j.chaos.2006.05.037.  Google Scholar

[12]

T. L. FrieszD. H. BernsteinN. J. MehtaR. L. Tobin and S. Ganjlizadeh, Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42 (1994), 1120-1136.  doi: 10.1287/opre.42.6.1120.  Google Scholar

[13]

T. L. FrieszZ. G. Suo and D. H. Bernstein, A dynamic disequilibrium interregional commodity flow model, Transport. Res. B, 32 (1998), 467-483.  doi: 10.1016/S0191-2615(98)00012-5.  Google Scholar

[14]

Y. Jalilian and R. Jalilian, Existence of solution for delay fractional differential equations, Mediterr. J. Math., 10 (2013), 1731-1747.  doi: 10.1007/s00009-013-0281-1.  Google Scholar

[15]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[16] D. Kinderlehrer and G. Stampcchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York, 1980.   Google Scholar
[17]

M. A. Krasnoselskii, Some problems of nonlinear analysis, Amer. Math. Soc. Transl., 10 (1958), 345-409.   Google Scholar

[18]

W. H. LinA. Kulkarni and P. Mirchandani, Short-time arterial travel time prediction for advanced traveler infromation systems, J. Intel. Transportation Sys., 8 (2004), 143-154.   Google Scholar

[19]

C. P. Li and F. R. Zhang, A survey on the stability of fractional differential equations, Eur. Phys. J. Special Topics, 193 (2011), 27-47.  doi: 10.1140/epjst/e2011-01379-1.  Google Scholar

[20]

T. MaraabaF. Jarad and D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within caputo derivatives, Sci. China Ser. A, 51 (2008), 1775-1786.  doi: 10.1007/s11425-008-0068-1.  Google Scholar

[21]

T. MaraabaD. Baleanu and F. Jarad, Existence and uniqueness theorem for a class of delay differential equations with left and right caputo fractional derivatives, J. Math. Phys., 49 (2008), 083507, 11pp.  doi: 10.1063/1.2970709.  Google Scholar

[22]

M. L. MorgadoN. J. Ford and P. M. Lima, Analysis and numerical methods for fractional differential equations with delay, J. Comput. Appl. Math., 252 (2013), 159-168.  doi: 10.1016/j.cam.2012.06.034.  Google Scholar

[23]

B. P. Moghaddam and Z. S. Mostaghim, A numerical method based on finite difference for solving fractional delay differential equations, J. Taibah Univ. Sci., 7 (2013), 120-127.  doi: 10.1016/j.jtusci.2013.07.002.  Google Scholar

[24] A. Nagumey and D. Zhang, Projected Dynamical Systems and Variational Inequalities with Applications, Springer, New York, 1996.  doi: 10.1007/978-1-4615-2301-7.  Google Scholar
[25]

N. Ozalp and I. Koca, A fractional order nonlinear dynamical model of interpersonal relationships, Adv. Difference Equat., 2012 (2012), 7pp.  doi: 10.1186/1687-1847-2012-189.  Google Scholar

[26] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.   Google Scholar
[27]

S. B. SkaarA. N. Michel and R. K. Miller, Stability of viscoelastic control systems, IEEE Trans. Automat. Control, 33 (1988), 348-357.  doi: 10.1109/9.192189.  Google Scholar

[28]

W. Y. Szeto and H. K. Lo, The impact of advanced traveler information services on travel time and schedule delay costs, J. Intel. Transportation Sys., 9 (2007), 47-55.  doi: 10.1080/15472450590916840.  Google Scholar

[29]

L. SongS. Y. Xu and J. Y. Yang, Dynamical models of happiness with fractional order, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 616-628.  doi: 10.1016/j.cnsns.2009.04.029.  Google Scholar

[30]

P. J. Torvik and R. L. Bagley, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51 (1984), 294-298.  doi: 10.1115/1.3167615.  Google Scholar

[31]

Z. Wang, A numerical method for delayed fractional-order differential equations, J. Appl. Math. , 2013 (2013), Article ID 256071, 7 pages.  Google Scholar

[32]

X. K. WuZ. B. Wu and Y. Z. Zou, Existence, uniqueness and stability for a class of interval projective dynamical systems, Comm. Appl. Nonlinear Anal., 20 (2013), 81-94.   Google Scholar

[33]

Z. B. Wu and Y. Z. Zou, Stability analysis of two related projective dynamical systems in Hilbert spaces, Nonlinear Anal. Forum, 19 (2014), 37-51.   Google Scholar

[34]

Z. B. Wu and Y. Z. Zou, Global fraction-order projective dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2811-2819.  doi: 10.1016/j.cnsns.2014.01.007.  Google Scholar

[35]

Z. B. WuY. Z. Zou and N. J. Huang, A system of fractional-order interval projection neural networks, J. Comput. Appl. Math., 294 (2016), 389-402.  doi: 10.1016/j.cam.2015.09.007.  Google Scholar

[36]

Z. B. WuY. Z. Zou and N. J. Huang, A class of global fractional-order projective dynamical systems involving set-valued perturbations, Appl. Math. Comput., 277 (2016), 23-33.  doi: 10.1016/j.amc.2015.12.033.  Google Scholar

[37]

Z. B. WuJ. D. Li and N. J. Huang, A new system of global fractional-order interval implicit projection neural networks, Neurocomputing, 282 (2018), 111-121.   Google Scholar

[38]

Z. B. WuC. Min and N. J. Huang, On a system of fuzzy fractional differential inclusions with projection operators, Fuzzy Sets Syst., 347 (2018), 70-88.  doi: 10.1016/j.fss.2018.01.005.  Google Scholar

[39]

Y. S. Xia and T. L. Vincent, On the stability of global projected dynamical systems, J. Optim. Theory Appl., 106 (2000), 129-150.  doi: 10.1023/A:1004611224835.  Google Scholar

[40]

Y. S. Xia, Further results on global convergence and stability of global projected dynamical systems, J. Optim. Theory Appl., 122 (2004), 627-649.  doi: 10.1023/B:JOTA.0000042598.21226.af.  Google Scholar

[41]

Z. H. Yang and J. D. Cao, Initial value problems for arbitrary order fractional differential equations with delay, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2993-3005.  doi: 10.1016/j.cnsns.2013.03.006.  Google Scholar

[42]

D. Zhang and A. Nagurney, On the stability of projected dynamical systems, J. Optim. Theory Appl., 85 (1995), 97-124.  doi: 10.1007/BF02192301.  Google Scholar

[43]

X. M. Zhao and G. Orosz, Nonlinear day-to-day traffic dynamics with driver experience delay: Modeling, stability and bifurcation analysis, Phys. D, 275 (2014), 54-66.  doi: 10.1016/j.physd.2014.02.005.  Google Scholar

[44]

Y. ZhouF. Jiao and J. Li, Existence and uniqueness for fractional neutral differential equations with infinite delay, Nonlinear Anal., 71 (2009), 3249-3256.  doi: 10.1016/j.na.2009.01.202.  Google Scholar

[45]

Y. Z. Zou, X. Li, N. J. Huang and C. Y. Sun, Global dynamical systems involving generalized $f$-projection operators and set-valued perturbation in Banach spaces, J. Appl. Math. , 2012 (2012), Article ID 682465, 12 pages.  Google Scholar

[46]

Y. Z. Zou and C. Y. Sun, Equilibrium points for two related projective dynamical systems, Comm. Appl. Nonlinear Anal., 19 (2012), 111-119.   Google Scholar

[47]

Y. Z. ZouX. K. WuW. B. Zhang and C. Y. Sun, An iterative method for a class of generalized global dynamical system involving fuzzy mappings in Hilbert spaces, Lecture Notes in Commput. Sci., 7666 (2012), 44-51.  doi: 10.1007/978-3-642-34478-7_6.  Google Scholar

Figure 1.  Transient behavior of the system (21) on [0, 0.4]
[1]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[2]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[3]

Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021022

[4]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[5]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[6]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[7]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[8]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[9]

Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021019

[10]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[11]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[12]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[13]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[14]

Alexander Tolstonogov. BV solutions of a convex sweeping process with a composed perturbation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021012

[15]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[16]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[17]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[18]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[19]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[20]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (198)
  • HTML views (1006)
  • Cited by (1)

Other articles
by authors

[Back to Top]