• Previous Article
    Asset liability management for an ordinary insurance system with proportional reinsurance in a CIR stochastic interest rate and Heston stochastic volatility framework
  • JIMO Home
  • This Issue
  • Next Article
    A new class of global fractional-order projective dynamical system with an application
January  2020, 16(1): 55-70. doi: 10.3934/jimo.2018140

Necessary optimality condition for trilevel optimization problem

1. 

School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

2. 

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

* Corresponding author

Received  January 2017 Revised  September 2017 Published  September 2018

Fund Project: This work was supported by the Natural Science Foundation of China (11871383, 11401487), and the Basic and Advanced Research Project of Chongqing(cstc2016jcyjA0239).

This paper mainly studies the optimality conditions for a class of trilevel optimization problem, of which all levels are nonlinear programs. We firstly transform this problem into an auxiliary bilevel optimization problem by applying KKT approach to the lower-level problem. Then we obtain a necessary optimality condition via the differential calculus of Mordukhovich. Finally, a theorem for existence of optimal solution is derived via Weierstrass Theorem.

Citation: Gaoxi Li, Zhongping Wan, Jia-wei Chen, Xiaoke Zhao. Necessary optimality condition for trilevel optimization problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 55-70. doi: 10.3934/jimo.2018140
References:
[1]

N. AlguacilA. Delgadillo and J. M. Arroyo, A trilevel programming approach for electric grid defense planning, Computers and Operations Research, 41 (2014), 282-290.  doi: 10.1016/j.cor.2013.06.009.  Google Scholar

[2] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, A Wiley-Interscience Publication, New York, 1984.   Google Scholar
[3]

B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-linear Parametric Optimization, Birkha"user Verlag, Basel-Boston, Mass., 1983.  Google Scholar

[4]

J. F. Bard, An investigation of the linear three level programming problem, IEEE Transactions on Systems, Man and Cybernetics, 5 (1984), 711-717.  doi: 10.1109/TSMC.1984.6313291.  Google Scholar

[5]

B. Si and Z. Gao, Optimal model for passenger transport pricing under the condition of market competition, Journal of Transportation Systems Engineering and Information Technology, 1 (2007), 72-78.  doi: 10.1016/S1570-6672(07)60009-9.  Google Scholar

[6]

X. ChiZ. Wan and Z. Hao, Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem, Journal of Industrial and Management Optimization, 11 (2015), 1111-1125.  doi: 10.3934/jimo.2015.11.1111.  Google Scholar

[7]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Mathematical programming, 131 (2012), 37-48.  doi: 10.1007/s10107-010-0342-1.  Google Scholar

[8]

S. DempeB. S. Mordukhovich and A. B. Zemkoho, Sensitivity analysis for two-level value functions with applications to bilevel programming, SIAM Journal on Optimization, 22 (2012), 1309-1343.  doi: 10.1137/110845197.  Google Scholar

[9]

S. Dempe and A. B. Zemkoho, The generalized mangasarian-fromowitz constraint qualification and optimality conditions for bilevel programs, Journal of Optimization Theory and Applications, 148 (2011), 46-68.  doi: 10.1007/s10957-010-9744-8.  Google Scholar

[10]

S. Dempe and A. B. Zemkoho, The bilevel programming problem: Reformulations, constraint qualifications and optimality conditions, Mathematical Programming, 138 (2013), 447-473.  doi: 10.1007/s10107-011-0508-5.  Google Scholar

[11]

L. GuoG. H. LinJ. J. Ye and J. Zhang, Sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints, SIAM Journal on Optimization, 24 (2014), 1206-1237.  doi: 10.1137/130929783.  Google Scholar

[12]

J. HanJ. LuY. Hu and G. Zhang, Tri-level decision-making with multiple followers: Model, algorithm and case study, Information Sciences, 311 (2015), 182-204.  doi: 10.1016/j.ins.2015.03.043.  Google Scholar

[13]

C. HuangD. Fang and Z. Wan, An interactive intuitionistic fuzzy method for multilevel linear programming problems, Wuhan University Journal of Natural Sciences, 20 (2015), 113-118.  doi: 10.1007/s11859-015-1068-y.  Google Scholar

[14]

G. LiZ. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels programs being multiobjective, Pacific journal of optimiization, 13 (2017), 421-441.   Google Scholar

[15]

O. L. Mangasarian, Nonlinear Programming SIAM Classics in Applied Methematic, volume 10, 1969. Google Scholar

[16]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, Springer Science and Business Media, 2006. doi: 10.1007/3-540-31247-1.  Google Scholar

[17]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, volume 317. Springer Science and Business Media, 2009. Google Scholar

[18]

Z. WanL. Mao and G. Wang, Estimation of distribution algorithm for a class of nonlinear bilevel programming problems, Information Sciences, 256 (2014), 184-196.  doi: 10.1016/j.ins.2013.09.021.  Google Scholar

[19]

Z. WanG. Wang and B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems, Swarm and Evolutionary Computation, 8 (2013), 26-32.  doi: 10.1016/j.swevo.2012.08.001.  Google Scholar

[20]

D. White, Penalty function approach to linear trilevel programming, Journal of Optimization Theory and Applications, 93 (1997), 183-197.  doi: 10.1023/A:1022610103712.  Google Scholar

[21]

H. Xu and B. Li, Dynamic cloud pricing for revenue maximization, IEEE Transactions on Cloud Computing, 1 (2013), 158-171.   Google Scholar

[22]

J. J. Ye, Necessary optimality conditions for multiobjective bilevel programs, Mathematics of Operations Research, 36 (2011), 165-184.  doi: 10.1287/moor.1100.0480.  Google Scholar

[23]

G. Zhang, J. Lu and Y. Gao, Multi-level Decision Making, Springer-Verlag Berlin Heidelberg, 2015.  Google Scholar

[24]

G. ZhangJ. LuJ. Montero and Y. Zeng, Model, solution concept, and kth-best algorithm for linear trilevel programming, Information Sciences, 180 (2010), 481-492.  doi: 10.1016/j.ins.2009.10.013.  Google Scholar

[25]

Z. Zhang, G. Zhang, J. Lu and C. Guo, A fuzzy tri-level decision making algorithm and its application in supply chain, The 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT2013), Milan, Italy, 2013,154-160. doi: 10.2991/eusflat.2013.22.  Google Scholar

[26]

Y. ZhengJ. Liu and Z. Wan, Interactive fuzzy decision making method for solving bilevel programming problem, Applied Mathematical Modelling, 38 (2014), 3136-3141.  doi: 10.1016/j.apm.2013.11.008.  Google Scholar

[27]

Y. ZhengZ. WanS. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.  doi: 10.3934/jimo.2015.11.529.  Google Scholar

show all references

References:
[1]

N. AlguacilA. Delgadillo and J. M. Arroyo, A trilevel programming approach for electric grid defense planning, Computers and Operations Research, 41 (2014), 282-290.  doi: 10.1016/j.cor.2013.06.009.  Google Scholar

[2] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, A Wiley-Interscience Publication, New York, 1984.   Google Scholar
[3]

B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer, Non-linear Parametric Optimization, Birkha"user Verlag, Basel-Boston, Mass., 1983.  Google Scholar

[4]

J. F. Bard, An investigation of the linear three level programming problem, IEEE Transactions on Systems, Man and Cybernetics, 5 (1984), 711-717.  doi: 10.1109/TSMC.1984.6313291.  Google Scholar

[5]

B. Si and Z. Gao, Optimal model for passenger transport pricing under the condition of market competition, Journal of Transportation Systems Engineering and Information Technology, 1 (2007), 72-78.  doi: 10.1016/S1570-6672(07)60009-9.  Google Scholar

[6]

X. ChiZ. Wan and Z. Hao, Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem, Journal of Industrial and Management Optimization, 11 (2015), 1111-1125.  doi: 10.3934/jimo.2015.11.1111.  Google Scholar

[7]

S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Mathematical programming, 131 (2012), 37-48.  doi: 10.1007/s10107-010-0342-1.  Google Scholar

[8]

S. DempeB. S. Mordukhovich and A. B. Zemkoho, Sensitivity analysis for two-level value functions with applications to bilevel programming, SIAM Journal on Optimization, 22 (2012), 1309-1343.  doi: 10.1137/110845197.  Google Scholar

[9]

S. Dempe and A. B. Zemkoho, The generalized mangasarian-fromowitz constraint qualification and optimality conditions for bilevel programs, Journal of Optimization Theory and Applications, 148 (2011), 46-68.  doi: 10.1007/s10957-010-9744-8.  Google Scholar

[10]

S. Dempe and A. B. Zemkoho, The bilevel programming problem: Reformulations, constraint qualifications and optimality conditions, Mathematical Programming, 138 (2013), 447-473.  doi: 10.1007/s10107-011-0508-5.  Google Scholar

[11]

L. GuoG. H. LinJ. J. Ye and J. Zhang, Sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints, SIAM Journal on Optimization, 24 (2014), 1206-1237.  doi: 10.1137/130929783.  Google Scholar

[12]

J. HanJ. LuY. Hu and G. Zhang, Tri-level decision-making with multiple followers: Model, algorithm and case study, Information Sciences, 311 (2015), 182-204.  doi: 10.1016/j.ins.2015.03.043.  Google Scholar

[13]

C. HuangD. Fang and Z. Wan, An interactive intuitionistic fuzzy method for multilevel linear programming problems, Wuhan University Journal of Natural Sciences, 20 (2015), 113-118.  doi: 10.1007/s11859-015-1068-y.  Google Scholar

[14]

G. LiZ. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels programs being multiobjective, Pacific journal of optimiization, 13 (2017), 421-441.   Google Scholar

[15]

O. L. Mangasarian, Nonlinear Programming SIAM Classics in Applied Methematic, volume 10, 1969. Google Scholar

[16]

B. S. Mordukhovich, Variational Analysis and Generalized Differentiation I: Basic Theory, Springer Science and Business Media, 2006. doi: 10.1007/3-540-31247-1.  Google Scholar

[17]

R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, volume 317. Springer Science and Business Media, 2009. Google Scholar

[18]

Z. WanL. Mao and G. Wang, Estimation of distribution algorithm for a class of nonlinear bilevel programming problems, Information Sciences, 256 (2014), 184-196.  doi: 10.1016/j.ins.2013.09.021.  Google Scholar

[19]

Z. WanG. Wang and B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems, Swarm and Evolutionary Computation, 8 (2013), 26-32.  doi: 10.1016/j.swevo.2012.08.001.  Google Scholar

[20]

D. White, Penalty function approach to linear trilevel programming, Journal of Optimization Theory and Applications, 93 (1997), 183-197.  doi: 10.1023/A:1022610103712.  Google Scholar

[21]

H. Xu and B. Li, Dynamic cloud pricing for revenue maximization, IEEE Transactions on Cloud Computing, 1 (2013), 158-171.   Google Scholar

[22]

J. J. Ye, Necessary optimality conditions for multiobjective bilevel programs, Mathematics of Operations Research, 36 (2011), 165-184.  doi: 10.1287/moor.1100.0480.  Google Scholar

[23]

G. Zhang, J. Lu and Y. Gao, Multi-level Decision Making, Springer-Verlag Berlin Heidelberg, 2015.  Google Scholar

[24]

G. ZhangJ. LuJ. Montero and Y. Zeng, Model, solution concept, and kth-best algorithm for linear trilevel programming, Information Sciences, 180 (2010), 481-492.  doi: 10.1016/j.ins.2009.10.013.  Google Scholar

[25]

Z. Zhang, G. Zhang, J. Lu and C. Guo, A fuzzy tri-level decision making algorithm and its application in supply chain, The 8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT2013), Milan, Italy, 2013,154-160. doi: 10.2991/eusflat.2013.22.  Google Scholar

[26]

Y. ZhengJ. Liu and Z. Wan, Interactive fuzzy decision making method for solving bilevel programming problem, Applied Mathematical Modelling, 38 (2014), 3136-3141.  doi: 10.1016/j.apm.2013.11.008.  Google Scholar

[27]

Y. ZhengZ. WanS. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.  doi: 10.3934/jimo.2015.11.529.  Google Scholar

[1]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[2]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[5]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[6]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[8]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[9]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[10]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[11]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[12]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[13]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[14]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[15]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (260)
  • HTML views (1187)
  • Cited by (0)

Other articles
by authors

[Back to Top]