This paper mainly studies the optimality conditions for a class of trilevel optimization problem, of which all levels are nonlinear programs. We firstly transform this problem into an auxiliary bilevel optimization problem by applying KKT approach to the lower-level problem. Then we obtain a necessary optimality condition via the differential calculus of Mordukhovich. Finally, a theorem for existence of optimal solution is derived via Weierstrass Theorem.
Citation: |
[1] |
N. Alguacil, A. Delgadillo and J. M. Arroyo, A trilevel programming approach for electric grid defense planning, Computers and Operations Research, 41 (2014), 282-290.
doi: 10.1016/j.cor.2013.06.009.![]() ![]() ![]() |
[2] |
J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, A Wiley-Interscience Publication, New York, 1984.
![]() ![]() |
[3] |
B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer,
Non-linear Parametric Optimization, Birkha"user Verlag, Basel-Boston, Mass., 1983.
![]() ![]() |
[4] |
J. F. Bard, An investigation of the linear three level programming problem, IEEE Transactions on Systems, Man and Cybernetics, 5 (1984), 711-717.
doi: 10.1109/TSMC.1984.6313291.![]() ![]() ![]() |
[5] |
B. Si and Z. Gao, Optimal model for passenger transport pricing under the condition of market competition, Journal of Transportation Systems Engineering and Information Technology, 1 (2007), 72-78.
doi: 10.1016/S1570-6672(07)60009-9.![]() ![]() |
[6] |
X. Chi, Z. Wan and Z. Hao, Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem, Journal of Industrial and Management Optimization, 11 (2015), 1111-1125.
doi: 10.3934/jimo.2015.11.1111.![]() ![]() ![]() |
[7] |
S. Dempe and J. Dutta, Is bilevel programming a special case of a mathematical program with complementarity constraints?, Mathematical programming, 131 (2012), 37-48.
doi: 10.1007/s10107-010-0342-1.![]() ![]() ![]() |
[8] |
S. Dempe, B. S. Mordukhovich and A. B. Zemkoho, Sensitivity analysis for two-level value functions with applications to bilevel programming, SIAM Journal on Optimization, 22 (2012), 1309-1343.
doi: 10.1137/110845197.![]() ![]() ![]() |
[9] |
S. Dempe and A. B. Zemkoho, The generalized mangasarian-fromowitz constraint qualification and optimality conditions for bilevel programs, Journal of Optimization Theory and Applications, 148 (2011), 46-68.
doi: 10.1007/s10957-010-9744-8.![]() ![]() ![]() |
[10] |
S. Dempe and A. B. Zemkoho, The bilevel programming problem: Reformulations, constraint qualifications and optimality conditions, Mathematical Programming, 138 (2013), 447-473.
doi: 10.1007/s10107-011-0508-5.![]() ![]() ![]() |
[11] |
L. Guo, G. H. Lin, J. J. Ye and J. Zhang, Sensitivity analysis of the value function for parametric mathematical programs with equilibrium constraints, SIAM Journal on Optimization, 24 (2014), 1206-1237.
doi: 10.1137/130929783.![]() ![]() ![]() |
[12] |
J. Han, J. Lu, Y. Hu and G. Zhang, Tri-level decision-making with multiple followers: Model, algorithm and case study, Information Sciences, 311 (2015), 182-204.
doi: 10.1016/j.ins.2015.03.043.![]() ![]() |
[13] |
C. Huang, D. Fang and Z. Wan, An interactive intuitionistic fuzzy method for multilevel linear programming problems, Wuhan University Journal of Natural Sciences, 20 (2015), 113-118.
doi: 10.1007/s11859-015-1068-y.![]() ![]() ![]() |
[14] |
G. Li, Z. Wan and X. Zhao, Optimality conditions for bilevel optimization problem with both levels programs being multiobjective, Pacific journal of optimiization, 13 (2017), 421-441.
![]() ![]() |
[15] |
O. L. Mangasarian,
Nonlinear Programming SIAM Classics in Applied Methematic, volume 10, 1969.
![]() |
[16] |
B. S. Mordukhovich,
Variational Analysis and Generalized Differentiation I: Basic Theory, Springer Science and Business Media, 2006.
doi: 10.1007/3-540-31247-1.![]() ![]() |
[17] |
R. T. Rockafellar and R. J.-B. Wets,
Variational Analysis, volume 317. Springer Science and Business Media, 2009.
![]() |
[18] |
Z. Wan, L. Mao and G. Wang, Estimation of distribution algorithm for a class of nonlinear bilevel programming problems, Information Sciences, 256 (2014), 184-196.
doi: 10.1016/j.ins.2013.09.021.![]() ![]() ![]() |
[19] |
Z. Wan, G. Wang and B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems, Swarm and Evolutionary Computation, 8 (2013), 26-32.
doi: 10.1016/j.swevo.2012.08.001.![]() ![]() |
[20] |
D. White, Penalty function approach to linear trilevel programming, Journal of Optimization Theory and Applications, 93 (1997), 183-197.
doi: 10.1023/A:1022610103712.![]() ![]() ![]() |
[21] |
H. Xu and B. Li, Dynamic cloud pricing for revenue maximization, IEEE Transactions on Cloud Computing, 1 (2013), 158-171.
![]() |
[22] |
J. J. Ye, Necessary optimality conditions for multiobjective bilevel programs, Mathematics of Operations Research, 36 (2011), 165-184.
doi: 10.1287/moor.1100.0480.![]() ![]() ![]() |
[23] |
G. Zhang, J. Lu and Y. Gao,
Multi-level Decision Making, Springer-Verlag Berlin Heidelberg, 2015.
![]() ![]() |
[24] |
G. Zhang, J. Lu, J. Montero and Y. Zeng, Model, solution concept, and kth-best algorithm for linear trilevel programming, Information Sciences, 180 (2010), 481-492.
doi: 10.1016/j.ins.2009.10.013.![]() ![]() ![]() |
[25] |
Z. Zhang, G. Zhang, J. Lu and C. Guo, A fuzzy tri-level decision making algorithm and its
application in supply chain, The 8th Conference of the European Society for Fuzzy Logic and
Technology (EUSFLAT2013), Milan, Italy, 2013,154-160.
doi: 10.2991/eusflat.2013.22.![]() ![]() |
[26] |
Y. Zheng, J. Liu and Z. Wan, Interactive fuzzy decision making method for solving bilevel programming problem, Applied Mathematical Modelling, 38 (2014), 3136-3141.
doi: 10.1016/j.apm.2013.11.008.![]() ![]() ![]() |
[27] |
Y. Zheng, Z. Wan, S. Jia and G. Wang, A new method for strong-weak linear bilevel programming problem, Journal of Industrial and Management Optimization, 11 (2015), 529-547.
doi: 10.3934/jimo.2015.11.529.![]() ![]() ![]() |