[1]
|
L. H. Bai and J. Y. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.
doi: 10.1016/j.insmatheco.2007.11.002.
|
[2]
|
T. R. Bielecki, S. Pliska and S. J. Sheu, Risk sensitive portfolio management with Cox-Ingersoll-Ross interest rates: The HJB equation, SIAM Journal on Control and Optimization, 44 (2005), 1811-1843.
doi: 10.1137/S0363012903437952.
|
[3]
|
N. Bj$ä$uerle, Benchmark and mean-variance problems for insurers, Mathematical Methods of Operations Research, 62 (2005), 159-165.
doi: 10.1007/s00186-005-0446-1.
|
[4]
|
Y. Cao and N. Wan, Optimal proportional reinsurance and investment based on Hailton-Jacobi-Bellman equation, Insurance: Mathematics and Economics, 45 (2009), 157-162.
doi: 10.1016/j.insmatheco.2009.05.006.
|
[5]
|
G. Chacko and L. M. Viceira, Dynamic consumption and portfolio choice with stochastic volatility in incomplete markets, Review of Financial Studies, 18 (2005), 1369-1402.
|
[6]
|
H. Chang and X. M. Rong, An investment and consumption problem with cir interest rate and stochastic volatility,
Abstract and Applied Analysis, 2013 (2013), Art. ID 219397, 12 pp.
doi: 10.1155/2013/219397.
|
[7]
|
S. M. Chen, Z. F. Li and K. M. Li, Optimal investment-reinsurance for an insurance company with VaR constraint, Insurance: Mathematics and Economics, 47 (2010), 144-153.
doi: 10.1016/j.insmatheco.2010.06.002.
|
[8]
|
M. C. Chiu and H. Y. Wong, Optimal investment for insurer with cointegrated assets: CRRA utility, Insurance: Mathematics and Economics, 52 (2013), 52-64.
doi: 10.1016/j.insmatheco.2012.11.004.
|
[9]
|
J. C. Cox, J. E. Ingersoll and S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-407.
doi: 10.2307/1911242.
|
[10]
|
A. Dassios and J. Nagaradjasarma, Pricing of Asian Options on Interest Rates in the CIR model,
LSE Research Online, 2011. Available from: http://eprints.lse.ac.uk/32084.
|
[11]
|
G. Deelstra, M. Grasselli and P. F. Koehl, Optimal Investment Strategies in a CIR Framework, Journal of Applied Probability, 37 (2000), 936-946.
doi: 10.1239/jap/1014843074.
|
[12]
|
J. W. Gao, Optimal portfolio for dc pension plans under a CEV model, Insurance: Mathematics and Economics, 44 (2009), 479-490.
doi: 10.1016/j.insmatheco.2009.01.005.
|
[13]
|
J. W. Gao, An extended CEV model and the legendre transform-dual-asymptotic solutions for annuity contracts, Insurance: Mathematics and Economics, 46 (2010), 511-530.
doi: 10.1016/j.insmatheco.2010.01.009.
|
[14]
|
M. Grasselli, A stability result for the HARA class with stochastic interest rates, Insurance: Mathematics and Economics, 33 (2003), 611-627.
doi: 10.1016/j.insmatheco.2003.09.003.
|
[15]
|
L. Grzelak and K. Oosterlee, On the heston model with stochastic interest rate, SIAM Journal on Financial Mathematics, 2 (2011), 255-286.
doi: 10.1137/090756119.
|
[16]
|
M. D. Gu, Y. P. Yang, S. D. Li and J. Y. Zhang, Consistant elasticity of variance model for proportional reinsurance and invesment stategies, Insurance: Mathematics and Economics, 46 (2010), 580-587.
doi: 10.1016/j.insmatheco.2010.03.001.
|
[17]
|
A. Gu, X. Guo, Z. F. Li and Y. Zeng, Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model, Insurance: Mathematics and Economics, 51 (2012), 674-684.
doi: 10.1016/j.insmatheco.2012.09.003.
|
[18]
|
G. Guan and Z. Liang, Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility framework, Insurance: Mathematics and Economics, 57 (2014), 58-66.
doi: 10.1016/j.insmatheco.2014.05.004.
|
[19]
|
V. Henderson, Analytical comparisons of option prices in stochastic volatility models, Mathematical Finance, 15 (2005), 49-59.
doi: 10.1111/j.0960-1627.2005.00210.x.
|
[20]
|
H. Huang, M. A. Milevsky and J. Wang, Portfolio choice and life insurance: The CRRA case, Journal of Risk and Insurance, 75 (2008), 847-872.
|
[21]
|
J. Kallsen and J. Muhle-Jarbe, Utility maximization in affine stochastic volatility models, International Journal of Theoretical and Applied Finance, 13 (2010), 459-477.
doi: 10.1142/S0219024910005851.
|
[22]
|
A. Kell and H. M$ü$ller, Efficient portfolio in the asset liability context, Astin Bulletin, 25 (1995), 33-48.
|
[23]
|
H. Kraft, Optimal portfolio and heston's stochastic volatility model: an explicit solution for power utility, Quantitative Finance, 5 (2005), 303-313.
doi: 10.1080/14697680500149503.
|
[24]
|
D. Li, X. Rong and H. Zhao, Optimal investment problem for an insurer and a reinsurer, Journal of Systems Science and Complexity, 28 (2015), 1326-1343.
doi: 10.1007/s11424-015-3065-9.
|
[25]
|
Z. F. Li, Y. Zeng and Y. Lai, Optimal time-consistent investment and reinsurance strategies for insurers under Heston's SV model, Insurance: Mathematics and Economics, 51 (2012), 191-203.
doi: 10.1016/j.insmatheco.2011.09.002.
|
[26]
|
S. Z. Luo, M. Taksar and A. Tsoi, On Reinsurance and Investment for Large insurance portfolios, Insurance: Mathematics and Economics, 42 (2008), 434-444.
doi: 10.1016/j.insmatheco.2007.04.002.
|
[27]
|
R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.
|
[28]
|
R. C. Merton, Optimal consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X.
|
[29]
|
R. C. Merton, An analytical derivation of the efficient portfolio frontier, Journal of Financial and Quantitative Analysis, 7 (1972), 1851-1872.
|
[30]
|
R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial Economics, 3 (1976), 125-144.
|
[31]
|
A. Sepp, Pricing options on realized variance in the heston model with jumps in returns and volatility, Journal of Computational Finance, 11 (2008), 33-70.
|
[32]
|
W. F. Sharpe and L. G. Tint, Liabilities-a new approach, Journal of Portfolio Management, 16 (1990), 5-10.
|
[33]
|
M. Taksar and X. D. Zeng, A General Stochastic Volatility Model and Optimal Portfolio with Explicit Solutions, Working Paper, (2009).
|
[34]
|
M. Taksar and X. D. Zeng, A stochastic volatility model and optimal portfolio selection, Quant. Finance, 13 (2013), 1547-1558.
doi: 10.1080/14697688.2012.740568.
|
[35]
|
B. Yi, Z. F. Li, F. G. Viens and Y. Zeng, Robust optimal control for an insurer with reinsurance and investment under heston's stochastic volatility model, Insurance: Mathematics and Economics, 53 (2013), 601-614.
doi: 10.1016/j.insmatheco.2013.08.011.
|
[36]
|
J. Yong and X. Y. Zhou, Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999.
doi: 10.1007/978-1-4612-1466-3.
|
[37]
|
Y. Zeng and Z. F. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers, Insurance: Mathematics and Economics, 49 (2011), 145-154.
doi: 10.1016/j.insmatheco.2011.01.001.
|
[38]
|
Y. Zeng and Z. F. Li, Optimal reinsurance-investment strategies for insurers under mean-CaR criteria, Journal of Industry and Management Optimization, 8 (2012), 673-690.
doi: 10.3934/jimo.2012.8.673.
|
[39]
|
Y. Zeng, Z. F. Li and Y. Lai, Time-consistent investment and reinsurance strategies for mean-variance insurers with jumps, Insurance: Mathematics and Economics, 52 (2013), 498-507.
doi: 10.1016/j.insmatheco.2013.02.007.
|
[40]
|
H. Zhao, X. Rong and Y. Zhao, Optimal excess-of-loss reinsurance and investment problem for an insurer with jump-diffusion risk process under the Heston model, Insurance: Mathematics and Economics, 53 (2013), 504-514.
doi: 10.1016/j.insmatheco.2013.08.004.
|
[41]
|
H. Zhao, C. Weng and Y. Zeng, Time-consistent investment-reinsurance strategies towards joint interests of the insurer and the reinsurer under CEV models, SSRN 2432207, 2014.
|
[42]
|
A. A. Zimbidis, Premium and reinsurance control of an ordinary insurance system with liabilities driven by a fractional brownian motion, Scandinavian Actuarial Journal, 1 (2008), 16-33.
doi: 10.1080/03461230701722810.
|