[1]
|
S. Das and P. Suganthan, Differential evolution, A survey of the state-of-the-art, IEEE Transactions on Evolutionary Computation, 15 (2011), 4-31.
|
[2]
|
M. Dorigo and C. Blum, Ant colony optimization theory, A survey, Theoretical Computer Science, 344 (2005), 243-278.
doi: 10.1016/j.tcs.2005.05.020.
|
[3]
|
R. Eberhart and Y. Shi, Particle swarm optimization, Development, applications and resources, Proceedings of the 2001 Congress on Evolutionary Computation, 1 (2001), 81-86.
doi: 10.1109/CEC.2001.934374.
|
[4]
|
E. Valian, S. Mohanna and S. Tavakoli, Improved cuckoo search algorithm for global optimization, International Journal of Communications and Information Technology, 1 (2011), 31-44.
|
[5]
|
I. Fister, X. Yang and D. Fister, Cuckoo search, A brief literature review, Studies in Computational Intelligence, 516 (2014), 49-62.
doi: 10.1007/978-3-319-02141-6_3.
|
[6]
|
D. Goldberg, Genetic algorithms and machine learning, Machine Learning, 3 (1988), 95-99.
|
[7]
|
D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization, artificial bee colony (ABC) algorithm, Journal of Global Optimization, 39 (2007), 459-471.
doi: 10.1007/s10898-007-9149-x.
|
[8]
|
J. Liu, S. Dong, L. Zhang, Q. Ma and C. Wu, Estimation of archie parameters by a novel hybrid optimization algorithm, Journal of Petroleum Science and Engineering, 135 (2015), 232-239.
doi: 10.1016/j.petrol.2015.09.003.
|
[9]
|
J. Liu, K. Teo, X. Wang and C. Wu, An exact penalty function-based differential search algorithm for constrained global optimization, Soft Computing, 20 (2015), 1305-1313.
doi: 10.1007/s00500-015-1588-6.
|
[10]
|
J. Liu, C. Wu, G. Wu and X. Wang, A novel differential search algorithm and applications for structure design, Applied Mathematics & Computation, 268 (2015), 246-269.
doi: 10.1016/j.amc.2015.06.036.
|
[11]
|
J. Liu, S. Zhang, C. Wu, J. Liang, X. Wang and K. L. Teo, A hybrid approach to constrained global optimization, Applied Soft Computing, 47 (2016), 281-294.
doi: 10.1016/j.asoc.2016.05.021.
|
[12]
|
J. Liu, H. Zhu, Q. Ma, L. Zhang and H. Xu, An artificial bee colony algorithm with guide of global & local optimal and asynchronous scaling factors for numerical optimization, Applied Soft Computing, 37 (2015), 608-618.
|
[13]
|
Q. Long and C. Wu, A hybrid method combining genetic algorithm and Hooke-Jeeves method for constrained global optimization, Journal of Industrial & Management Optimization, 10 (2014), 1279-1296.
doi: 10.3934/jimo.2014.10.1279.
|
[14]
|
M. Platel, L. Defoin, S. Schliebs and N. Kasabov, Quantum-inspired evolutionary algorithm, a multimodel EDA, IEEE Transactions on Evolutionary Computation, 13 (2009), 1218-1232.
doi: 10.1109/TEVC.2008.2003010.
|
[15]
|
A. Qin, V. Huang and P. Suganthan, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Transactions on Evolutionary Computation, 13 (2009), 398-417.
doi: 10.1109/TEVC.2008.927706.
|
[16]
|
R. Rao, V. Savsani and D. Vakharia, Teaching-learning-based optimization, A novel method for constrained mechanical design optimization problems, Computer-aided Design, 43 (2011), 303-315.
doi: 10.1016/j.cad.2010.12.015.
|
[17]
|
R. Rao, V. Savsani and D. Vakharia, Teaching-learning-based optimization, An optimization method for continuous non-linear large scale problems, Information Sciences, 183 (2012), 1-15.
doi: 10.1016/j.ins.2011.08.006.
|
[18]
|
S. Tao, C. Wu, Z. Sheng and X. Wang, Space-time repetitive project scheduling considering location and congestion,
Journal of Computing in Civil Engineering, 32 (2018), Article ID, 04018017.
doi: 10.1061/(ASCE)CP.1943-5487.0000745.
|
[19]
|
S. Tao, C. Wu, Z. Sheng and X. Wang, Stochastic project scheduling with hierarchical alternatives, Applied Mathematical Modelling, 58 (2018), 181-202.
doi: 10.1016/j.apm.2017.09.015.
|
[20]
|
M. Tavazoei and M. Haeri, Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms, Applied Mathematics and Computation, 187 (2007), 1076-1085.
doi: 10.1016/j.amc.2006.09.087.
|
[21]
|
Z. Wang, D. Gao and J. Liu, Multi-objective sidetracking horizontal well trajectory optimization in cluster wells based on DS algorithm, Journal of Petroleum Science & Engineering, 147 (2016), 771-778.
doi: 10.1016/j.petrol.2016.09.046.
|
[22]
|
X. Yang and S. Deb, Cuckoo search, Recent advances and applications, Neural Computing and Applications, 24 (2014), 169-174.
doi: 10.1007/s00521-013-1367-1.
|
[23]
|
X. S. Yang,
Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2010.
|
[24]
|
X. S. Yang and S. Deb, Cuckoo search via lévy flights, In World Congress on Nature & Biologically Inspired Computing, (2009), 210-214.
|
[25]
|
Y. Zhang, L. Wang and Q. Wu, Modified adaptive cuckoo search (MACS) algorithm and formal description for global optimisation, International Journal of Computer Applications in Technology, 44 (2012), 73-79.
doi: 10.1504/IJCAT.2012.048675.
|
[26]
|
C. Zhao, C. Wu, J. Chai, X. Wang, X. Yang, J. Lee and M. Kim, Decomposition-based multi-objective firefly algorithm for RFID network planning with uncertainty, Applied Soft Computing, 55 (2011), 549-564.
doi: 10.1016/j.asoc.2017.02.009.
|
[27]
|
H. Zheng and Y. Zhou, A novel cuckoo search optimization algorithm base on Gauss distribution, Journal of Computational Information Systems, 8 (2012), 4193-4200.
|
[28]
|
H. Zheng and Y. Zhou, Self-adaptive step cuckoo search algorithm, Computer Engineering & Applications, 49 (2013), 68-71.
|