    January  2020, 16(1): 117-140. doi: 10.3934/jimo.2018143

## Interdependent demand in the two-period newsvendor problem

 1 Department of Industrial Engineering, Yazd University, Yazd, Iran 2 Poznan University of Technology, Faculty of Engineering, Management, Poznan, Poland, IAM, METU, Ankara, Turkey 3 Department of Industrial Engineering, University of Science and Culture, Tehran, Iran 4 Department of Environment, College of Agriculture, Takestan Branch, Islamic Azad University, Takestan, Iran

* Corresponding author:Rezalotfi@stu.yazd.ac.ir

Received  March 2017 Revised  May 2018 Published  September 2018

The newsvendor problem is a classical task in inventory management. The present paper considers a two-period newsvendor problem where demand of different periods is interdependent (not independent), and seeks to follow this approach to develop a two-period newsvendor problem with unsatisfied demand or unsold quantity. Concerning the complexity of solution of multiple integrals, the problem is assessed for only two periods. In the course of a numerical solution, the probability distribution function of demand pertaining to each period is assumed to be given (in the form of a bivariate normal distribution). The optimal solution is presented in the form of the initial inventory level that maximizes the expected profit. Finally, all model parameters are subjected to a sensitivity analysis. This model can be used in a number of applications, such as procurement of raw materials in projects (e.g., construction, bridge-building and molding) where demand of different periods is interdependent. Proposed model takes into account interdependent demand oughts to provide a better solution than a model based on independent demand.

Citation: Reza Lotfi, Gerhard-Wilhelm Weber, S. Mehdi Sajadifar, Nooshin Mardani. Interdependent demand in the two-period newsvendor problem. Journal of Industrial & Management Optimization, 2020, 16 (1) : 117-140. doi: 10.3934/jimo.2018143
##### References:
  M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1992. Google Scholar  N. Altintas, F. Erhun and S. Tayur, Quantity discounts under demand uncertainty, Management Science, 54 (2008), 777-792.  doi: 10.1287/mnsc.1070.0829. Google Scholar  L. C. Alwan, M. Xu, D. Q. Yao and X. Yue, The dynamic newsvendor model with correlated demand, Decision Sciences, 47 (2016), 11-30.   Google Scholar  H. Behret and C. Kahraman, A multi-period newsvendor problem with pre-season extension under fuzzy demand, Journal of Business Economics and Management, 11 (2010), 613-629.  doi: 10.3846/jbem.2010.30. Google Scholar  M. Bouakiz and M. J. Sobel, Inventory control with an exponential utility criterion, Operations Research, 40 (1992), 603-608.  doi: 10.1287/opre.40.3.603.  Google Scholar  A. Burnetas, S. M. Gilbert and C. E. Smith, Quantity discounts in single-period supply contracts with asymmetric demand information, IIE Transactions, 39 (2007), 465-479.   Google Scholar  J. M. Chen and H. L. Cheng, Effect of the price-dependent revenue-sharing mechanism in a decentralized supply chain, Central European Journal of Operations Research, 20 (2012), 299-317.  doi: 10.1007/s10100-010-0182-3.  Google Scholar  S. P. Chen and Y. H. Ho, Analysis of the newsboy problem with fuzzy demands and incremental discounts, International Journal of Production Economics, 129 (2011), 169-177.  doi: 10.1016/j.ijpe.2010.09.014. Google Scholar  S. P. Chen and Y. H. Ho, Optimal inventory policy for the fuzzy newsboy problem with quantity discounts, Information Sciences, 228 (2013), 75-89.  doi: 10.1016/j.ins.2012.12.015.  Google Scholar  S. Ding and Y. Gao, The (σ, S) policy for uncertain multi-product newsboy problem, Expert Systems with Applications, 41 (2014), 3769-3776.   Google Scholar  H. Gaspars-Wieloch, Newsvendor problem under complete uncertainty: A case of innovative products, Central European Journal of Operations Research, 25 (2017), 561-585.  doi: 10.1007/s10100-016-0458-3.  Google Scholar  G. A. Hanasusanto, D. Kuhn, S. W. Wallace and S. Zymler, Distributionally robust multi-item newsvendor problems with multimodal demand distributions, Mathematical Programming, 152 (2015), 1-32.  doi: 10.1007/s10107-014-0776-y.  Google Scholar  D. Huang, H. Zhou and Q. H. Zhao, A competitive multiple-product newsboy problem with partial product substitution, Omega, 39 (2011), 302-312.  doi: 10.1016/j.omega.2010.07.008. Google Scholar  J. Kamburowski, The distribution-free newsboy problem under the worst-case and best-case scenarios, European Journal of Operational Research, 237 (2014), 106-112.  doi: 10.1016/j.ejor.2014.01.066.  Google Scholar  J. Kamburowski, The distribution-free newsboy problem and the demand skew, International Transactions in Operational Research, 22 (2015), 929-946.  doi: 10.1111/itor.12139.  Google Scholar  M. Khouja, The single-period (news-vendor) problem: literature review and suggestions for future research, Omega, 27 (1999), 537-553.  doi: 10.1016/S0305-0483(99)00017-1. Google Scholar  K. Matsuyama, The multi-period newsboy problem, European Journal of Operational Research, 171 (2006), 170-188.  doi: 10.1016/j.ejor.2004.08.030.  Google Scholar  P. Mileff and K. Nehéz, Solving capacity constraint problems in a multi-item, multi-period newsvendor model, Proc. of microCAD, (2007), 169-176.   Google Scholar  R. Lotfi, M. Nayeri, S. Sajadifar and N. Mardani, Determination of start times and ordering plans for two-period projects with interdependent demand in project-oriented organizations: A case study on molding industry, Journal of Project Management, 2 (2018a), 119-142.  doi: 10.5267/j.jpm.2017.9.001. Google Scholar  R. Lotfi, A. Mostafaeipour, N. Mardani and S. Mardani, Investigation of wind farm location planning by considering budget constraints, International Journal of Sustainable Energy, 37 (2018), 799-817.  doi: 10.1080/14786451.2018.1437160. Google Scholar  M. Fakhrzad and R. Lotfi, Green vendor managed inventory with backorder in two echelon supply chain with Epsilon-Constraint and NSGA-Ⅱ approach, Journal of Industrial Engineering Research in Production Systems, 5 (2018), 193-209.  doi: 10.22084/ier.2017.11270.1509. Google Scholar  B. Pal, S. S Sana and K. Chaudhuri, A distribution-free newsvendor problem with nonlinear holding cost, International Journal of Systems Science, 46 (2015), 1269-1277.  doi: 10.1080/00207721.2013.815828. Google Scholar  W. L. Pearn, R. H. Su, M. W. Weng and C. H. Hsu, Optimal production run time for two-stage production system with imperfect processes and allowable shortages, Central European Journal of Operations Research, 19 (2011), 533-545.  doi: 10.1007/s10100-010-0143-x.  Google Scholar  G. Perakis and A. Sood, Competitive multi-period pricing with fixed inventories, (2004). Google Scholar  Y. Qin, R. Wang, A. J. Vakharia, Y. Chen and M. M. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.  doi: 10.1016/j.ejor.2010.11.024.  Google Scholar  P. Ray and M. Jenamani, Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach, Annals of Operations Research, 237 (2016), 237-262.  doi: 10.1007/s10479-014-1649-8.  Google Scholar  S. S. Sana, Price sensitive demand with random sales price--a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498.  doi: 10.1080/00207721.2010.517856.  Google Scholar  J. W. Tukey, Sufficiency, truncation and selection, The Annals of Mathematical Statistics, 20 (1949), 309-311.  doi: 10.1214/aoms/1177730042.  Google Scholar  C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003. Google Scholar  B. Zhang and S. Du, Multi-product newsboy problem with limited capacity and outsourcing, European Journal of Operational Research, 202 (2010), 107-113.  doi: 10.1016/j.ejor.2009.04.017. Google Scholar  B. Zhang and Z. Hua, A portfolio approach to multi-product newsboy problem with budget constraint, Computers & Industrial Engineering, 58 (2010), 759-765.  doi: 10.1016/j.cie.2010.02.007. Google Scholar  G. Zhang, The multi-product newsboy problem with supplier quantity discounts and a budget constraint, European Journal of Operational Research, 206 (2010), 350-360.  doi: 10.1016/j.ejor.2010.02.038.  Google Scholar

show all references

##### References:
  M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1992. Google Scholar  N. Altintas, F. Erhun and S. Tayur, Quantity discounts under demand uncertainty, Management Science, 54 (2008), 777-792.  doi: 10.1287/mnsc.1070.0829. Google Scholar  L. C. Alwan, M. Xu, D. Q. Yao and X. Yue, The dynamic newsvendor model with correlated demand, Decision Sciences, 47 (2016), 11-30.   Google Scholar  H. Behret and C. Kahraman, A multi-period newsvendor problem with pre-season extension under fuzzy demand, Journal of Business Economics and Management, 11 (2010), 613-629.  doi: 10.3846/jbem.2010.30. Google Scholar  M. Bouakiz and M. J. Sobel, Inventory control with an exponential utility criterion, Operations Research, 40 (1992), 603-608.  doi: 10.1287/opre.40.3.603.  Google Scholar  A. Burnetas, S. M. Gilbert and C. E. Smith, Quantity discounts in single-period supply contracts with asymmetric demand information, IIE Transactions, 39 (2007), 465-479.   Google Scholar  J. M. Chen and H. L. Cheng, Effect of the price-dependent revenue-sharing mechanism in a decentralized supply chain, Central European Journal of Operations Research, 20 (2012), 299-317.  doi: 10.1007/s10100-010-0182-3.  Google Scholar  S. P. Chen and Y. H. Ho, Analysis of the newsboy problem with fuzzy demands and incremental discounts, International Journal of Production Economics, 129 (2011), 169-177.  doi: 10.1016/j.ijpe.2010.09.014. Google Scholar  S. P. Chen and Y. H. Ho, Optimal inventory policy for the fuzzy newsboy problem with quantity discounts, Information Sciences, 228 (2013), 75-89.  doi: 10.1016/j.ins.2012.12.015.  Google Scholar  S. Ding and Y. Gao, The (σ, S) policy for uncertain multi-product newsboy problem, Expert Systems with Applications, 41 (2014), 3769-3776.   Google Scholar  H. Gaspars-Wieloch, Newsvendor problem under complete uncertainty: A case of innovative products, Central European Journal of Operations Research, 25 (2017), 561-585.  doi: 10.1007/s10100-016-0458-3.  Google Scholar  G. A. Hanasusanto, D. Kuhn, S. W. Wallace and S. Zymler, Distributionally robust multi-item newsvendor problems with multimodal demand distributions, Mathematical Programming, 152 (2015), 1-32.  doi: 10.1007/s10107-014-0776-y.  Google Scholar  D. Huang, H. Zhou and Q. H. Zhao, A competitive multiple-product newsboy problem with partial product substitution, Omega, 39 (2011), 302-312.  doi: 10.1016/j.omega.2010.07.008. Google Scholar  J. Kamburowski, The distribution-free newsboy problem under the worst-case and best-case scenarios, European Journal of Operational Research, 237 (2014), 106-112.  doi: 10.1016/j.ejor.2014.01.066.  Google Scholar  J. Kamburowski, The distribution-free newsboy problem and the demand skew, International Transactions in Operational Research, 22 (2015), 929-946.  doi: 10.1111/itor.12139.  Google Scholar  M. Khouja, The single-period (news-vendor) problem: literature review and suggestions for future research, Omega, 27 (1999), 537-553.  doi: 10.1016/S0305-0483(99)00017-1. Google Scholar  K. Matsuyama, The multi-period newsboy problem, European Journal of Operational Research, 171 (2006), 170-188.  doi: 10.1016/j.ejor.2004.08.030.  Google Scholar  P. Mileff and K. Nehéz, Solving capacity constraint problems in a multi-item, multi-period newsvendor model, Proc. of microCAD, (2007), 169-176.   Google Scholar  R. Lotfi, M. Nayeri, S. Sajadifar and N. Mardani, Determination of start times and ordering plans for two-period projects with interdependent demand in project-oriented organizations: A case study on molding industry, Journal of Project Management, 2 (2018a), 119-142.  doi: 10.5267/j.jpm.2017.9.001. Google Scholar  R. Lotfi, A. Mostafaeipour, N. Mardani and S. Mardani, Investigation of wind farm location planning by considering budget constraints, International Journal of Sustainable Energy, 37 (2018), 799-817.  doi: 10.1080/14786451.2018.1437160. Google Scholar  M. Fakhrzad and R. Lotfi, Green vendor managed inventory with backorder in two echelon supply chain with Epsilon-Constraint and NSGA-Ⅱ approach, Journal of Industrial Engineering Research in Production Systems, 5 (2018), 193-209.  doi: 10.22084/ier.2017.11270.1509. Google Scholar  B. Pal, S. S Sana and K. Chaudhuri, A distribution-free newsvendor problem with nonlinear holding cost, International Journal of Systems Science, 46 (2015), 1269-1277.  doi: 10.1080/00207721.2013.815828. Google Scholar  W. L. Pearn, R. H. Su, M. W. Weng and C. H. Hsu, Optimal production run time for two-stage production system with imperfect processes and allowable shortages, Central European Journal of Operations Research, 19 (2011), 533-545.  doi: 10.1007/s10100-010-0143-x.  Google Scholar  G. Perakis and A. Sood, Competitive multi-period pricing with fixed inventories, (2004). Google Scholar  Y. Qin, R. Wang, A. J. Vakharia, Y. Chen and M. M. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.  doi: 10.1016/j.ejor.2010.11.024.  Google Scholar  P. Ray and M. Jenamani, Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach, Annals of Operations Research, 237 (2016), 237-262.  doi: 10.1007/s10479-014-1649-8.  Google Scholar  S. S. Sana, Price sensitive demand with random sales price--a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498.  doi: 10.1080/00207721.2010.517856.  Google Scholar  J. W. Tukey, Sufficiency, truncation and selection, The Annals of Mathematical Statistics, 20 (1949), 309-311.  doi: 10.1214/aoms/1177730042.  Google Scholar  C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003. Google Scholar  B. Zhang and S. Du, Multi-product newsboy problem with limited capacity and outsourcing, European Journal of Operational Research, 202 (2010), 107-113.  doi: 10.1016/j.ejor.2009.04.017. Google Scholar  B. Zhang and Z. Hua, A portfolio approach to multi-product newsboy problem with budget constraint, Computers & Industrial Engineering, 58 (2010), 759-765.  doi: 10.1016/j.cie.2010.02.007. Google Scholar  G. Zhang, The multi-product newsboy problem with supplier quantity discounts and a budget constraint, European Journal of Operational Research, 206 (2010), 350-360.  doi: 10.1016/j.ejor.2010.02.038.  Google Scholar
Classification of the literature
 Reference Fuzzy Single-period Multi-period Multi-product Risk Demand Product Market Discount Bouakiz and Sobel  1 1 Independent Perakis and Sood  1 Independent Perishable Competitive Matsuyama  1 Independent Mileff and Nehéz  1 1 Independent Burnetas et al.  1 Independent Incremental Altintas et al.  1 Independent All-Unit Wang and Webster  1 1 Independent Behret and Kahraman  1 1 Independent Chen and Ho  1 1 Independent Zhang  1 Independent All-Units Zhang and Du  1 Independent Zhang and Hua  1 Independent Huang et al.  1 Independent Sana  1 Independent Chen and Ho  1 1 Independent Ray and Jenamani  1 1 Independent Ding and Gao  1 Independent Kamburowski  1 Independent Kamburowski  1 Independent Pal and Sana  1 Independent Hanasusanto et al.  1 1 Interdependent product Alwan et al.  1 Interdependent Summary 3 10 6 7 4 20 Independent 2 Interdependent 1 Perishable 1 Competitive 1 Incremental 2 All-Unit The present study 1 Interdependent Demand
 Reference Fuzzy Single-period Multi-period Multi-product Risk Demand Product Market Discount Bouakiz and Sobel  1 1 Independent Perakis and Sood  1 Independent Perishable Competitive Matsuyama  1 Independent Mileff and Nehéz  1 1 Independent Burnetas et al.  1 Independent Incremental Altintas et al.  1 Independent All-Unit Wang and Webster  1 1 Independent Behret and Kahraman  1 1 Independent Chen and Ho  1 1 Independent Zhang  1 Independent All-Units Zhang and Du  1 Independent Zhang and Hua  1 Independent Huang et al.  1 Independent Sana  1 Independent Chen and Ho  1 1 Independent Ray and Jenamani  1 1 Independent Ding and Gao  1 Independent Kamburowski  1 Independent Kamburowski  1 Independent Pal and Sana  1 Independent Hanasusanto et al.  1 1 Interdependent product Alwan et al.  1 Interdependent Summary 3 10 6 7 4 20 Independent 2 Interdependent 1 Perishable 1 Competitive 1 Incremental 2 All-Unit The present study 1 Interdependent Demand
Conceptual Model
 Description Period $j$ Status of demand $L\leq x_j\leq l_j\leq N$ $L\leq l_j\leq x_j\leq N$ Sale income $q_jx_j$ $q_jl_j$ Buying cost $p_jl_j$ $p_jl_j$ Unsold $\left(l_j-x_j\right)$ 0 Stocked amount $\alpha (l_j-x_j)$ 0 Holding cost of amount unsold ${{s}}_j\alpha (l_j -x_j )$ 0 Unsatisfied demand 0 $\beta \left({x_j -{l}}_j\right)$ Penalty for unsatisfied demand 0 $\pi (x_j -l_j )$ Order of period j+1 $l_{j+1}-\alpha (l_j -x_j )$ $l_{j+1}+\beta ({x_j-l}_j)$
 Description Period $j$ Status of demand $L\leq x_j\leq l_j\leq N$ $L\leq l_j\leq x_j\leq N$ Sale income $q_jx_j$ $q_jl_j$ Buying cost $p_jl_j$ $p_jl_j$ Unsold $\left(l_j-x_j\right)$ 0 Stocked amount $\alpha (l_j-x_j)$ 0 Holding cost of amount unsold ${{s}}_j\alpha (l_j -x_j )$ 0 Unsatisfied demand 0 $\beta \left({x_j -{l}}_j\right)$ Penalty for unsatisfied demand 0 $\pi (x_j -l_j )$ Order of period j+1 $l_{j+1}-\alpha (l_j -x_j )$ $l_{j+1}+\beta ({x_j-l}_j)$
Differences between the proposed model and 
 Problem Expected Profit ($H^*$) of Proposed Model Corrolation = -0.5 Expected Profit of Matsuyama  Correlation = 0 Gap P1 866.59 790.38 8.79% P2 2173.1 1983 8.75% P3 3486.3 3181.7 8.74% P4 4801.6 4382.3 8.73% P5 5459.7 4983 8.73% P6 6118 5583.9 8.73% Mean(Gap) 8.75% Variance(Gap) 0.0000061%
 Problem Expected Profit ($H^*$) of Proposed Model Corrolation = -0.5 Expected Profit of Matsuyama  Correlation = 0 Gap P1 866.59 790.38 8.79% P2 2173.1 1983 8.75% P3 3486.3 3181.7 8.74% P4 4801.6 4382.3 8.73% P5 5459.7 4983 8.73% P6 6118 5583.9 8.73% Mean(Gap) 8.75% Variance(Gap) 0.0000061%
Sensitivity analysis of the proposed model
 Parameter Result of differentiation Proof $\alpha$ $\frac{\partial }{\partial \alpha }H\left(l_1, l_2, x_1, x_2\right)=\frac{p_2-s_1}{\left|p_2-s_1\right|}$ Appendix 3 Proof 2 $\beta$ $\frac{\partial }{\partial \beta }H\left(l_1, l_2, x_1, x_2\right)=\frac{\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2}{\left|\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2\right|}$ Appendix 3 Proof 2 $\delta$ $\frac{\partial }{\partial \delta }H\left(l_1, l_2, x_1, x_2\right)=\frac{q_1-q_2}{\left|q_1-q_2\right|}$ Appendix 3 Proof 2 $\pi$ $\frac{\partial }{\partial \pi }H\left(l_1, l_2, x_1, x_2\right)< 0, \;\;\;\;\forall \pi$ Appendix 3 Proof 2 $q_1$ $\frac{\partial }{\partial q_1}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_1$ Appendix 3 Proof 3 $q_2$ $\frac{\partial }{\partial q_2}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_2$ Appendix 3 Proof 3 $p_1$ $\frac{\partial }{\partial p_1}H\left(l_1, l_2, x_1, x_2\right)<0, \;\;\;\; \forall \ p_1\ \ \ \ \$ Appendix 3 Proof 4 $p_2$ $\frac{\partial }{\partial p_2}H\left(l_1, l_2, x_1, x_2\right) =-l_2+\alpha \left(l_1-\mu _1\right)$+\left(\alpha -\beta \right)\int^{\infty }_{ -\infty }{\int^{\infty }_{l_1}{\left({x_1-l}_1\right)f\left(x_1, x_2\right)dx_1dx_2}} Appendix 3 Proof 4  Parameter Result of differentiation Proof \alpha \frac{\partial }{\partial \alpha }H\left(l_1, l_2, x_1, x_2\right)=\frac{p_2-s_1}{\left|p_2-s_1\right|} Appendix 3 Proof 2 \beta \frac{\partial }{\partial \beta }H\left(l_1, l_2, x_1, x_2\right)=\frac{\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2}{\left|\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2\right|} Appendix 3 Proof 2 \delta \frac{\partial }{\partial \delta }H\left(l_1, l_2, x_1, x_2\right)=\frac{q_1-q_2}{\left|q_1-q_2\right|} Appendix 3 Proof 2 \pi \frac{\partial }{\partial \pi }H\left(l_1, l_2, x_1, x_2\right)< 0, \;\;\;\;\forall \pi Appendix 3 Proof 2 q_1 \frac{\partial }{\partial q_1}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_1 Appendix 3 Proof 3 q_2 \frac{\partial }{\partial q_2}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_2 Appendix 3 Proof 3 p_1 \frac{\partial }{\partial p_1}H\left(l_1, l_2, x_1, x_2\right)<0, \;\;\;\; \forall \ p_1\ \ \ \ \ Appendix 3 Proof 4 p_2 \frac{\partial }{\partial p_2}H\left(l_1, l_2, x_1, x_2\right) =-l_2+\alpha \left(l_1-\mu _1\right)$+\left(\alpha -\beta \right)\int^{\infty }_{ -\infty }{\int^{\infty }_{l_1}{\left({x_1-l}_1\right)f\left(x_1, x_2\right)dx_1dx_2}}$ Appendix 3 Proof 4
Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \alpha \leq 1$)
 $\alpha$ $H^*$ $l^*_1$ $l^*_2$ 20% 861.47 190.73 240.88 40% 862.27 195.58 240.88 60% 863.3 201.73 240.88 80% 864.65 209.82 240.88 100% 866.59 220.99 240.88
 $\alpha$ $H^*$ $l^*_1$ $l^*_2$ 20% 861.47 190.73 240.88 40% 862.27 195.58 240.88 60% 863.3 201.73 240.88 80% 864.65 209.82 240.88 100% 866.59 220.99 240.88
Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \beta \leq 1$)
 $\beta$ $H^*$ $l^*_1$ $l^*_2$ 20% 858.4 270.2 240.88 40% 859.07 266.14 240.88 60% 860.13 259.76 240.88 80% 862.04 248.29 240.88 100% 866.59 220.99 240.88
 $\beta$ $H^*$ $l^*_1$ $l^*_2$ 20% 858.4 270.2 240.88 40% 859.07 266.14 240.88 60% 860.13 259.76 240.88 80% 862.04 248.29 240.88 100% 866.59 220.99 240.88
Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \delta \leq 1$)
 $\delta$ $H^*$ $l^*_1$ $l^*_2$ 0% 1532.1 271.1 240.88 20% 1532.5 274.55 240.88 40% 1533.1 271.1 240.88 60% 1534 265.4 240.88 80% 1535.9 254.17 240.88 100% 1541.3 220.98 240.88
 $\delta$ $H^*$ $l^*_1$ $l^*_2$ 0% 1532.1 271.1 240.88 20% 1532.5 274.55 240.88 40% 1533.1 271.1 240.88 60% 1534 265.4 240.88 80% 1535.9 254.17 240.88 100% 1541.3 220.98 240.88
  Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031  Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115  Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251  Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253  M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014  Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017  Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384  Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453  Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075  Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171  Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056  Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340  Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351  Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348  Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052  Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.366