\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Interdependent demand in the two-period newsvendor problem

Abstract / Introduction Full Text(HTML) Figure(5) / Table(7) Related Papers Cited by
  • The newsvendor problem is a classical task in inventory management. The present paper considers a two-period newsvendor problem where demand of different periods is interdependent (not independent), and seeks to follow this approach to develop a two-period newsvendor problem with unsatisfied demand or unsold quantity. Concerning the complexity of solution of multiple integrals, the problem is assessed for only two periods. In the course of a numerical solution, the probability distribution function of demand pertaining to each period is assumed to be given (in the form of a bivariate normal distribution). The optimal solution is presented in the form of the initial inventory level that maximizes the expected profit. Finally, all model parameters are subjected to a sensitivity analysis. This model can be used in a number of applications, such as procurement of raw materials in projects (e.g., construction, bridge-building and molding) where demand of different periods is interdependent. Proposed model takes into account interdependent demand oughts to provide a better solution than a model based on independent demand.

    Mathematics Subject Classification: 90B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Process of implementation of the conceptual model

    Figure 2.  Chart of Differences between the proposed model and Matsuyama [17]

    Figure 3.  Chart of the ratio ($\alpha $)

    Figure 4.  Chart of the ratio ($\beta $)

    Figure 5.  Chart of the ratio ($\delta $)

    Table 1.  Classification of the literature

    Reference Fuzzy Single-period Multi-period Multi-product Risk Demand Product Market Discount
    Bouakiz and Sobel [5] 1 1 Independent
    Perakis and Sood [24] 1 Independent Perishable Competitive
    Matsuyama [17] 1 Independent
    Mileff and Nehéz [18] 1 1 Independent
    Burnetas et al. [6] 1 Independent Incremental
    Altintas et al. [2] 1 Independent All-Unit
    Wang and Webster [29] 1 1 Independent
    Behret and Kahraman [4] 1 1 Independent
    Chen and Ho [8] 1 1 Independent
    Zhang [32] 1 Independent All-Units
    Zhang and Du [30] 1 Independent
    Zhang and Hua [31] 1 Independent
    Huang et al. [13] 1 Independent
    Sana [27] 1 Independent
    Chen and Ho [9] 1 1 Independent
    Ray and Jenamani [26] 1 1 Independent
    Ding and Gao [10] 1 Independent
    Kamburowski [14] 1 Independent
    Kamburowski [14] 1 Independent
    Pal and Sana [22] 1 Independent
    Hanasusanto et al. [12] 1 1 Interdependent
    product
    Alwan et al. [3] 1 Interdependent
    Summary 3 10 6 7 4 20 Independent
    2 Interdependent
    1 Perishable 1 Competitive 1 Incremental
    2 All-Unit
    The present study 1 Interdependent
    Demand
     | Show Table
    DownLoad: CSV

    Table 2.  Conceptual Model

    Description Period $j$
    Status of demand $L\leq x_j\leq l_j\leq N$ $L\leq l_j\leq x_j\leq N$
    Sale income $q_jx_j$ $q_jl_j$
    Buying cost $p_jl_j$ $p_jl_j$
    Unsold $\left(l_j-x_j\right)$ 0
    Stocked amount $\alpha (l_j-x_j)$ 0
    Holding cost of amount unsold ${{s}}_j\alpha (l_j -x_j )$ 0
    Unsatisfied demand 0 $\beta \left({x_j -{l}}_j\right)$
    Penalty for unsatisfied demand 0 $\pi (x_j -l_j )$
    Order of period j+1 $l_{j+1}-\alpha (l_j -x_j )$ $l_{j+1}+\beta ({x_j-l}_j)$
     | Show Table
    DownLoad: CSV

    Table 3.  Differences between the proposed model and [17]

    Problem Expected Profit ($H^*$) of Proposed Model Corrolation = -0.5 Expected Profit of Matsuyama [17] Correlation = 0 Gap
    P1 866.59 790.38 8.79%
    P2 2173.1 1983 8.75%
    P3 3486.3 3181.7 8.74%
    P4 4801.6 4382.3 8.73%
    P5 5459.7 4983 8.73%
    P6 6118 5583.9 8.73%
    Mean(Gap) 8.75%
    Variance(Gap) 0.0000061%
     | Show Table
    DownLoad: CSV

    Table 4.  Sensitivity analysis of the proposed model

    Parameter Result of differentiation Proof
    $\alpha $ $\frac{\partial }{\partial \alpha }H\left(l_1, l_2, x_1, x_2\right)=\frac{p_2-s_1}{\left|p_2-s_1\right|}$ Appendix 3
    Proof 2
    $\beta $ $\frac{\partial }{\partial \beta }H\left(l_1, l_2, x_1, x_2\right)=\frac{\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2}{\left|\left(\delta q_1+\left(1-\delta \right)q_2\right)-p_2\right|}$ Appendix 3
    Proof 2
    $\delta $ $\frac{\partial }{\partial \delta }H\left(l_1, l_2, x_1, x_2\right)=\frac{q_1-q_2}{\left|q_1-q_2\right|}$ Appendix 3
    Proof 2
    $\pi $ $\frac{\partial }{\partial \pi }H\left(l_1, l_2, x_1, x_2\right)< 0, \;\;\;\;\forall \pi $ Appendix 3
    Proof 2
    $q_1$ $\frac{\partial }{\partial q_1}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_1$ Appendix 3
    Proof 3
    $q_2$ $\frac{\partial }{\partial q_2}H\left(l_1, l_2, x_1, x_2\right)>0 \;\;\;\; \forall \ q_2$ Appendix 3
    Proof 3
    $p_1$ $\frac{\partial }{\partial p_1}H\left(l_1, l_2, x_1, x_2\right)<0, \;\;\;\; \forall \ p_1\ \ \ \ \ $ Appendix 3
    Proof 4
    $p_2$ $\frac{\partial }{\partial p_2}H\left(l_1, l_2, x_1, x_2\right) =-l_2+\alpha \left(l_1-\mu _1\right)$
    $+\left(\alpha -\beta \right)\int^{\infty }_{ -\infty }{\int^{\infty }_{l_1}{\left({x_1-l}_1\right)f\left(x_1, x_2\right)dx_1dx_2}}$
    Appendix 3
    Proof 4
     | Show Table
    DownLoad: CSV

    Table 5.  Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \alpha \leq 1$)

    $\alpha $ $H^*$ $l^*_1$ $l^*_2$
    20% 861.47 190.73 240.88
    40% 862.27 195.58 240.88
    60% 863.3 201.73 240.88
    80% 864.65 209.82 240.88
    100% 866.59 220.99 240.88
     | Show Table
    DownLoad: CSV

    Table 6.  Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \beta \leq 1$)

    $\beta $ $H^*$ $l^*_1$ $l^*_2$
    20% 858.4 270.2 240.88
    40% 859.07 266.14 240.88
    60% 860.13 259.76 240.88
    80% 862.04 248.29 240.88
    100% 866.59 220.99 240.88
     | Show Table
    DownLoad: CSV

    Table 7.  Sensitivity analysis on expected profit ($H$) of the ratio ($0 \leq \delta \leq 1$)

    $\delta $ $H^*$ $l^*_1$ $l^*_2$
    0% 1532.1 271.1 240.88
    20% 1532.5 274.55 240.88
    40% 1533.1 271.1 240.88
    60% 1534 265.4 240.88
    80% 1535.9 254.17 240.88
    100% 1541.3 220.98 240.88
     | Show Table
    DownLoad: CSV
  • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1992.
    [2] N. AltintasF. Erhun and S. Tayur, Quantity discounts under demand uncertainty, Management Science, 54 (2008), 777-792.  doi: 10.1287/mnsc.1070.0829.
    [3] L. C. AlwanM. XuD. Q. Yao and X. Yue, The dynamic newsvendor model with correlated demand, Decision Sciences, 47 (2016), 11-30. 
    [4] H. Behret and C. Kahraman, A multi-period newsvendor problem with pre-season extension under fuzzy demand, Journal of Business Economics and Management, 11 (2010), 613-629.  doi: 10.3846/jbem.2010.30.
    [5] M. Bouakiz and M. J. Sobel, Inventory control with an exponential utility criterion, Operations Research, 40 (1992), 603-608.  doi: 10.1287/opre.40.3.603.
    [6] A. BurnetasS. M. Gilbert and C. E. Smith, Quantity discounts in single-period supply contracts with asymmetric demand information, IIE Transactions, 39 (2007), 465-479. 
    [7] J. M. Chen and H. L. Cheng, Effect of the price-dependent revenue-sharing mechanism in a decentralized supply chain, Central European Journal of Operations Research, 20 (2012), 299-317.  doi: 10.1007/s10100-010-0182-3.
    [8] S. P. Chen and Y. H. Ho, Analysis of the newsboy problem with fuzzy demands and incremental discounts, International Journal of Production Economics, 129 (2011), 169-177.  doi: 10.1016/j.ijpe.2010.09.014.
    [9] S. P. Chen and Y. H. Ho, Optimal inventory policy for the fuzzy newsboy problem with quantity discounts, Information Sciences, 228 (2013), 75-89.  doi: 10.1016/j.ins.2012.12.015.
    [10] S. Ding and Y. Gao, The (σ, S) policy for uncertain multi-product newsboy problem, Expert Systems with Applications, 41 (2014), 3769-3776. 
    [11] H. Gaspars-Wieloch, Newsvendor problem under complete uncertainty: A case of innovative products, Central European Journal of Operations Research, 25 (2017), 561-585.  doi: 10.1007/s10100-016-0458-3.
    [12] G. A. HanasusantoD. KuhnS. W. Wallace and S. Zymler, Distributionally robust multi-item newsvendor problems with multimodal demand distributions, Mathematical Programming, 152 (2015), 1-32.  doi: 10.1007/s10107-014-0776-y.
    [13] D. HuangH. Zhou and Q. H. Zhao, A competitive multiple-product newsboy problem with partial product substitution, Omega, 39 (2011), 302-312.  doi: 10.1016/j.omega.2010.07.008.
    [14] J. Kamburowski, The distribution-free newsboy problem under the worst-case and best-case scenarios, European Journal of Operational Research, 237 (2014), 106-112.  doi: 10.1016/j.ejor.2014.01.066.
    [15] J. Kamburowski, The distribution-free newsboy problem and the demand skew, International Transactions in Operational Research, 22 (2015), 929-946.  doi: 10.1111/itor.12139.
    [16] M. Khouja, The single-period (news-vendor) problem: literature review and suggestions for future research, Omega, 27 (1999), 537-553.  doi: 10.1016/S0305-0483(99)00017-1.
    [17] K. Matsuyama, The multi-period newsboy problem, European Journal of Operational Research, 171 (2006), 170-188.  doi: 10.1016/j.ejor.2004.08.030.
    [18] P. Mileff and K. Nehéz, Solving capacity constraint problems in a multi-item, multi-period newsvendor model, Proc. of microCAD, (2007), 169-176. 
    [19] R. LotfiM. NayeriS. Sajadifar and N. Mardani, Determination of start times and ordering plans for two-period projects with interdependent demand in project-oriented organizations: A case study on molding industry, Journal of Project Management, 2 (2018a), 119-142.  doi: 10.5267/j.jpm.2017.9.001.
    [20] R. LotfiA. MostafaeipourN. Mardani and S. Mardani, Investigation of wind farm location planning by considering budget constraints, International Journal of Sustainable Energy, 37 (2018), 799-817.  doi: 10.1080/14786451.2018.1437160.
    [21] M. Fakhrzad and R. Lotfi, Green vendor managed inventory with backorder in two echelon supply chain with Epsilon-Constraint and NSGA-Ⅱ approach, Journal of Industrial Engineering Research in Production Systems, 5 (2018), 193-209.  doi: 10.22084/ier.2017.11270.1509.
    [22] B. PalS. S Sana and K. Chaudhuri, A distribution-free newsvendor problem with nonlinear holding cost, International Journal of Systems Science, 46 (2015), 1269-1277.  doi: 10.1080/00207721.2013.815828.
    [23] W. L. PearnR. H. SuM. W. Weng and C. H. Hsu, Optimal production run time for two-stage production system with imperfect processes and allowable shortages, Central European Journal of Operations Research, 19 (2011), 533-545.  doi: 10.1007/s10100-010-0143-x.
    [24] G. Perakis and A. Sood, Competitive multi-period pricing with fixed inventories, (2004).
    [25] Y. QinR. WangA. J. VakhariaY. Chen and M. M. Seref, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011), 361-374.  doi: 10.1016/j.ejor.2010.11.024.
    [26] P. Ray and M. Jenamani, Sourcing decision under disruption risk with supply and demand uncertainty: A newsvendor approach, Annals of Operations Research, 237 (2016), 237-262.  doi: 10.1007/s10479-014-1649-8.
    [27] S. S. Sana, Price sensitive demand with random sales price--a newsboy problem, International Journal of Systems Science, 43 (2012), 491-498.  doi: 10.1080/00207721.2010.517856.
    [28] J. W. Tukey, Sufficiency, truncation and selection, The Annals of Mathematical Statistics, 20 (1949), 309-311.  doi: 10.1214/aoms/1177730042.
    [29] C. X. Wang and S. Webster, The loss-averse newsvendor problem, Omega, 37 (2009), 93-105.  doi: 10.1016/j.omega.2006.08.003.
    [30] B. Zhang and S. Du, Multi-product newsboy problem with limited capacity and outsourcing, European Journal of Operational Research, 202 (2010), 107-113.  doi: 10.1016/j.ejor.2009.04.017.
    [31] B. Zhang and Z. Hua, A portfolio approach to multi-product newsboy problem with budget constraint, Computers & Industrial Engineering, 58 (2010), 759-765.  doi: 10.1016/j.cie.2010.02.007.
    [32] G. Zhang, The multi-product newsboy problem with supplier quantity discounts and a budget constraint, European Journal of Operational Research, 206 (2010), 350-360.  doi: 10.1016/j.ejor.2010.02.038.
  • 加载中

Figures(5)

Tables(7)

SHARE

Article Metrics

HTML views(4107) PDF downloads(760) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return