This paper extends the existing dynamic consumption-investment problem to the case with more general discount functions under the robust framework. The decision-maker is ambiguity-averse and invests her wealth in a risk-free asset and a risky asset. Since non-exponential discounting is considered in our model, our optimization problem is time inconsistent. By solving the extended Hamilton-Jacobi-Bellman equations, the corresponding optimal consumption-investment strategies for sophisticated and naive investors under power and logarithmic utility functions are derived explicitly. Our model and results extend some existing ones and derive some interesting phenomena.
Citation: |
[1] |
A. Altarovici, J. Muhle-Karbe and H. M. Soner, Asymptotics for fixed transaction costs, Finance and Stochastics, 19 (2015), 363-414.
doi: 10.1007/s00780-015-0261-3.![]() ![]() ![]() |
[2] |
E. W. Anderson, L. P. Hansen and T. J. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123.
doi: 10.4324/9780203358061_chapter_16.![]() ![]() |
[3] |
D. Bertsimas and V. Goyal, On the approximability of adjustable robust convex optimization under uncertainty, Mathematical Methods of Operations Research, 77 (2013), 323-343.
doi: 10.1007/s00186-012-0405-6.![]() ![]() ![]() |
[4] |
B. Berdjane and S. Pergamenshchikov, Optimal consumption and investment for markets with random coefficients, Finance and Stochastics, 17 (2013), 419-446.
doi: 10.1007/s00780-012-0193-0.![]() ![]() ![]() |
[5] |
T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems, 2010, Working Paper, Stockholm School of Economics.
![]() |
[6] |
T. Bjork, A. Murgoci and X.Y. Zhou, Mean-variance portfolio optimization with state dependent risk aversion, Mathematical Finance, 24 (2014), 1-24.
doi: 10.1111/j.1467-9965.2011.00515.x.![]() ![]() ![]() |
[7] |
N. Castanedaleyva and D. Hernandezhernandez, Optimal consumption-investment problems in incomplete markets with stochastic coefficients, SIAM Journal on Control and Optimization, 44 (2005), 1322-1344.
doi: 10.1137/S0363012904440885.![]() ![]() ![]() |
[8] |
S. Chen, Z. Li and Y. Zeng, Optimal dividend strategies with time-inconsistent preferences, Journal of Economic Dynamics and Control, 46 (2014), 150-172.
doi: 10.1016/j.jedc.2014.06.018.![]() ![]() ![]() |
[9] |
J. F. Cocco, F. Gomes and P. J. Maenhout, Consumption and portfolio choice over the life cycle, Review of Financial Studies, 18 (2005), 491-533.
doi: 10.1093/rfs/hhi017.![]() ![]() |
[10] |
X. Cui, D. Li and X. Li, Mean-variance policy for discrete-time cone-constrained markets: Time consistency in efficiency and the minimum-variance signed supermartingale meansure, Mathematical Finance, 27 (2017), 471-504.
doi: 10.1111/mafi.12093.![]() ![]() ![]() |
[11] |
X. Cui, D. Li and Y. Shi, Self-coordination in time inconsistent stochastic decision problems: A planner-doer game framework, Journal of Economic Dynamics and Control, 75 (2017), 91-113.
doi: 10.1016/j.jedc.2016.12.001.![]() ![]() ![]() |
[12] |
C. Czichowsky, Time-consistent mean-variance portfolio selection in discrete and continuous time, Finance and Stochastics, 17 (2013), 227-271.
doi: 10.1007/s00780-012-0189-9.![]() ![]() ![]() |
[13] |
L. Delong and C. Klüppelberg, Optimal investment and consumption in a Black-Scholes market with Lévy-driven stochastic coefficients, Annals of Applied Probability, 18 (2008), 879-908.
doi: 10.1214/07-AAP475.![]() ![]() ![]() |
[14] |
I. Ekeland and A. Lazrak, The golden rule when preferences are time inconsistent, Mathematics and Financial Economics, 4 (2010), 29-55.
doi: 10.1007/s11579-010-0034-x.![]() ![]() ![]() |
[15] |
I. Ekeland and T. A. Pirvu, Investment and consumption without commitment, Mathematics and Financial Economics, 2 (2008), 57-86.
doi: 10.1007/s11579-008-0014-6.![]() ![]() ![]() |
[16] |
I. Ekeland, O. Mbodji and T. A. Pirvu, Time-consistent portfolio management, SIAM Journal on Financial Mathematics, 3 (2012), 1-32.
doi: 10.1137/100810034.![]() ![]() ![]() |
[17] |
W. H. Fleming and D. Hernandezhernandez, An optimal consumption model with stochastic volatility, Finance and Stochastics, 7 (2003), 245-262.
doi: 10.1007/s007800200083.![]() ![]() ![]() |
[18] |
C. R. Flor and L. S. Larsen, Robust portfolio choice with stochastic interest rates, Annals of
Finance, 10 (2014), 243-265.
doi: 10.1007/s10436-013-0234-5.![]() ![]() ![]() |
[19] |
S. Frederick, G. Loewenstein and T. Odonoghue, Time discounting and time preference: A critical review, Journal of Economic Literature, 40 (2002), 351-401.
doi: 10.1257/jel.40.2.351.![]() ![]() |
[20] |
N. Gülpinar and E. Çanakoḡlu, Robust portfolio selection problem under temperature uncertainty, European Journal of Operational Research, 256 (2016), 500-523.
![]() |
[21] |
Y. Hu, H. Jin and X. Zhou, Time-inconsistent stochastic linear-quadratic control, SIAM Journal on Control and Optimization, 50 (2012), 1548-1572.
doi: 10.1137/110853960.![]() ![]() ![]() |
[22] |
J. Kallsen and J. Muhlekarbe, The general structure of optimal investment and consumption with small transaction costs, Mathematical Finance, 27 (2017), 659-703.
doi: 10.1111/mafi.12106.![]() ![]() ![]() |
[23] |
L. Karp, Non-constant discounting in continuous time, Journal of Economic Theory, 132 (2007), 557-568.
doi: 10.1016/j.jet.2005.07.006.![]() ![]() ![]() |
[24] |
H. Liu, Robust consumption and portfolio choice for time varying investment opportunities, Annals of Finance, 6 (2010), 435-454.
![]() |
[25] |
H. Liu, Dynamic portfolio choice under ambiguity and regime switching mean returns, Journal of Economic Dynamics and Control, 35 (2011), 623-640.
doi: 10.1016/j.jedc.2010.12.012.![]() ![]() ![]() |
[26] |
G. Loewenstein and D. Prelec, Anomalies in intertemporal choice: Evidence and an interpretation, Quarterly Journal of Economics, 107 (1992), 573-597.
doi: 10.2307/2118482.![]() ![]() |
[27] |
P. J. Maenhout, Robust portfolio rules and asset pricing, Review of Financial Studies, 17 (2004), 951-983.
doi: 10.1093/rfs/hhh003.![]() ![]() |
[28] |
P. J. Maenhout, Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium, Journal of Economic Theory, 128 (2006), 136-163.
doi: 10.1016/j.jet.2005.12.012.![]() ![]() ![]() |
[29] |
A. Matoussi, D. Possamaï and C. Zhou, Robust utility maximization in nondominated models with 2BSDE: The uncerain volatility model, Mathematical Finance, 25 (2015), 258-287.
doi: 10.1111/mafi.12031.![]() ![]() ![]() |
[30] |
J. Marín-Solano and J. Navas, Consumption and portfolio rules for time-inconsistent investors, European Journal of Operational Research, 201 (2010), 860-872.
doi: 10.1016/j.ejor.2009.04.005.![]() ![]() ![]() |
[31] |
R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous-time case, Review of Economics and Statistics, 51 (1969), 247-257.
doi: 10.2307/1926560.![]() ![]() |
[32] |
R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.
doi: 10.1016/0022-0531(71)90038-X.![]() ![]() ![]() |
[33] |
C. Munk and A. N. Rubtsov, Portfolio management with stochastic interest rates and inflation ambiguity, Annals of Finance, 10 (2014), 419-455.
doi: 10.1007/s10436-013-0238-1.![]() ![]() ![]() |
[34] |
B. Øksendal,
Stochastic Differential Equations: An Introduction with Applications Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-13050-6.![]() ![]() ![]() |
[35] |
R. A. Pollak, Consistent planning, Review of Financial Studies, 35 (1968), 201-208.
doi: 10.2307/2296548.![]() ![]() |
[36] |
A. Schied, Robust optimal control for a consumption-investment problem, Mathematical Methods of Operations Research, 67 (2008), 1-20.
doi: 10.1007/s00186-007-0172-y.![]() ![]() ![]() |
[37] |
Y. Shen and J. Wei, Optimal investment-consumption-insurance with random parameters, Scandinavian Actuarial Journal, 2016 (2016), 37-62.
doi: 10.1080/03461238.2014.900518.![]() ![]() ![]() |
[38] |
R. Strotz, Myopia and inconsistency in dynamic utility maximization, Readings in Welfare Economics, (1973), 128-143.
doi: 10.1007/978-1-349-15492-0_10.![]() ![]() |
[39] |
Z. Sun, X. Zheng and X. Zhang, Robust optimal investment and reinsurance of an insurer under variance premium principle and default risk, Journal of Mathematical Analysis and Applications, 446 (2017), 1666-1686.
doi: 10.1016/j.jmaa.2016.09.053.![]() ![]() ![]() |
[40] |
J. Yong, Time-inconsistent optimal control problems and the equilibrium {HJB} equation, Mathematical Control and Related Fields, 2 (2012), 271-329.
doi: 10.3934/mcrf.2012.2.271.![]() ![]() ![]() |
[41] |
X. Zeng and M. Taksar, A stochastic volatility model and optimal portfolio selection, Quantitative Finance, 13 (2013), 1547-1558.
doi: 10.1080/14697688.2012.740568.![]() ![]() ![]() |
[42] |
Y. Zeng, D. Li and A. Gu, Robust equilibrium reinsurance-investment strategy for a mean-variance insurer in a model with jumps, Insurance: Mathematics and Economics, 66 (2016), 138-152.
doi: 10.1016/j.insmatheco.2015.10.012.![]() ![]() ![]() |
[43] |
Y. Zeng, D. Li, Z. Chen and Z. Yang, Ambiguity aversion and optimal derivative-based pension investment with stochastic income and volatility, Journal of Economic Dynamic and Control, 88 (2018), 70-103.
doi: 10.1016/j.jedc.2018.01.023.![]() ![]() ![]() |
[44] |
Q. Zhao, Y. Shen and J. Wei, Exponential utility maximization for an insurer with time-inconsistent preferences, Insurance: Mathematics and Economics, 70 (2016), 89-104.
doi: 10.1016/j.insmatheco.2016.06.003.![]() ![]() ![]() |
[45] |
Q. Zhao, R. Wang and J. Wei, Consumption-investment strategies with non-exponential discounting and logarithmic utility, European Journal of Operational Research, 238 (2014), 824-835.
doi: 10.1016/j.ejor.2014.04.034.![]() ![]() ![]() |