[1]
|
N. Andrei, Open problems in nonlinear conjugate gradient algorithms for unconstrained optimization, Bull. Malays. Math. Sci. Soc., 34 (2011), 319-330.
|
[2]
|
S. Babaie-Kafaki and G. Reza, A descent family of Dai-Liao conjugate gradient methods, Optim. Method. Softw., 21 (2013), 1-9.
doi: 10.1080/10556788.2013.833199.
|
[3]
|
I. Bongartz, A. Conn, N. Gould and P. Toint, CUTE: constrained and unconstrained testing environments, ACM Trans. Math. Software, 21 (1995), 123-160.
doi: 10.1145/200979.201043.
|
[4]
|
Y. Dai and C. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved wolfe line search, SIAM J. Optim, 23 (2013), 296-320.
doi: 10.1137/100813026.
|
[5]
|
Y. Dai and L. Liao, New conjugate conditions and related nonlinear conjugate gradient methods, Appl. Math. Optim., 43 (2001), 87-101.
doi: 10.1007/s002450010019.
|
[6]
|
Y. Dai and Y. Yuan, A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim., 10 (2000), 177-182.
doi: 10.1137/S1052623497318992.
|
[7]
|
Z. Dai and B. Tian, Global convergence of some modified PRP nonlinear conjugate gradient methods, Optim. Lett., 5 (2011), 615-630.
doi: 10.1007/s11590-010-0224-8.
|
[8]
|
E. Dolan and J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201-213.
doi: 10.1007/s101070100263.
|
[9]
|
R. Fletcher, Practical Method of Optimization, vol. 1: Unconstrained Optimization, John Wiley & Sons, New York, 1987.
|
[10]
|
R. Fletcher and C. Reeves, Function minimization by conjugate gradients, Comput. J., 7 (1964), 149-154.
doi: 10.1093/comjnl/7.2.149.
|
[11]
|
J. Gilbert and J. Nocedal, Global convergence properties of conjugate gradient methods for optimization, SIAM. J. Optim., 2 (1992), 21-42.
doi: 10.1137/0802003.
|
[12]
|
L. Grippo and S. Lucidi, A globally convergent version of the Polak-Ribière-Polyak conjugate gradient method, Math. Program., 78 (1979), 375-391.
doi: 10.1007/BF02614362.
|
[13]
|
W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search, SIAM J. Optim., 16 (2005), 170-192.
doi: 10.1137/030601880.
|
[14]
|
W. Hager and H. Zhang, Algorithm 851: CG_ DESCENT, a conjugate gradient method with guaranteed descent, ACM Trans. Math. Software, 32 (2006), 113-137.
doi: 10.1145/1132973.1132979.
|
[15]
|
W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods, Pac. J. Optim., 2 (2006), 35-58.
|
[16]
|
M. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl. Bur. Stand., 49 (1952), 409-436.
doi: 10.6028/jres.049.044.
|
[17]
|
G. Li, C. Tang and Z. Wei, New conjugacy condition and related new conjugate gradient methods for unconstrained optimization, J. Comput. Appl. Math., 202 (2007), 523-539.
doi: 10.1016/j.cam.2006.03.005.
|
[18]
|
M. Li, J. Liu and H. Feng, The global convergence of a descent PRP conjugate gradient method, Comput. Appl. Math., 31 (2012), 59-83.
|
[19]
|
D. Liu and J. Nocedal, On the limited memory BFGS method for large-scale optimization, Math. Program., 45 (1989), 503-528.
doi: 10.1007/BF01589116.
|
[20]
|
Y. Liu and C. Storey, Efficient generalized conjugate gradient algorithms, part 1: Theory, J. Optim. Theory Appl., 69 (1991), 177-182.
doi: 10.1007/BF00940464.
|
[21]
|
J. Nocedal, Updating quasi-Newton matrices with limited storage, Math. Comput., 35 (1980), 773-782.
doi: 10.1090/S0025-5718-1980-0572855-7.
|
[22]
|
J. M. Perry, A class of conjugate gradient algorithms with a two-step variable-metric memory, Discussion Paper 269, Center for Mathematical Studies in Economics and Management Sciences, Northwestern University, Evanston, Illinois, 1977.
doi: 10.1287/opre.26.6.1073.
|
[23]
|
B. Polak and G. Ribière, Note sur la convergence de directions conjuguées, Rev. Francaise Informat. Recherche Opertionelle, 3e Année, 16 (1969), 35-43.
|
[24]
|
B. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math. Phys., 9 (1969), 94-112.
|
[25]
|
M. Powell, Nonvonvex minimization calculations and the conjugate gradient method, in: Lecture Notes in Mathematics, vol. 1066, Springer-Verlag, Berlin, 1984.
doi: 10.1007/BFb0099521.
|
[26]
|
D. F. Shanno, On the convergence of a new conjugate gradient algorithm, SIAM J. Numer. Anal., 15 (1978), 1247-1257.
doi: 10.1137/0715085.
|
[27]
|
D. Shanno, Conjugate gradient methods with inexact searches, Math. Oper. Res., 3 (1978), 244-256.
doi: 10.1287/moor.3.3.244.
|
[28]
|
H. Yabe and M. Takano, Global convergence properties of nonlinear conjugate gradient methods with modified secant condition, Comput. Optim. Appl., 28 (2004), 203-225.
doi: 10.1023/B:COAP.0000026885.81997.88.
|
[29]
|
G. Yu and L. Guan, Modified PRP methods with sufficient desent property and their convergence properties, Acta Scientiarum Naturalium Universitatis Sunyatseni(Chinese), 45 (2006), 11-14.
|
[30]
|
G. Yuan, Z. Meng and Y. Li, A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations, J. Optimz. Theory App., 168 (2016), 129-152.
doi: 10.1007/s10957-015-0781-1.
|
[31]
|
G. Yuan, Z. Sheng, B. Wang, W. Hu and C. Li, The global convergence of a modified BFGS method for nonconvex functions, J. Comput. Appl. Math., 327 (2018), 274-294.
doi: 10.1016/j.cam.2017.05.030.
|
[32]
|
G. Yuan, Z. Wei and G. Li, A modified Polak-Ribiéere-Polyak conjugate gradient algorithm with nonmonotone line search for nonsmooth convex minimization, J. Comput. Appl. Math., 255 (2014), 86-96.
doi: 10.1007/s12190-015-0912-8.
|
[33]
|
G. Yuan, Z. Wei and X. Lu, Global convergence of the BFGS method and the PRP method for general functions under a modified weak Wolfe-Powell line search, Appl. Math. Model., 47 (2017), 811-825
doi: 10.1016/j.apm.2017.02.008.
|
[34]
|
G. Yuan, Modified nonlinear conjugate gradient methods with sufficient descent property for largescale optimization problems, Optim. Lett., 3 (2009), 11-21.
doi: 10.1007/s11590-008-0086-5.
|
[35]
|
J. Zhang, N. Deng and L. Chen, New quasi-newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl., 102 (1999), 147-167.
doi: 10.1023/A:1021898630001.
|
[36]
|
L. Zhang, New versions of the Hestenes-Stiefel nonlinear conjugate gradient method based on the secant condition for optimization, Comp. Appl. Math., 28 (2009), 1-23.
doi: 10.1590/S0101-82052009000100006.
|
[37]
|
L. Zhang, W. Zhou and D. Li, A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence, IMA J. Numer. Anal., 26 (2006), 629-640.
doi: 10.1093/imanum/drl016.
|
[38]
|
L. Zhang, W. Zhou and D. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math., 104 (2006), 561-572.
doi: 10.1007/s00211-006-0028-z.
|
[39]
|
G. Zoutendijk, Nonlinear programming, computational methods, in Integer and Nonlinear Programming (ed. J. Abadie), North-Holland, Amsterdam, 1970, 37-86.
|