January  2020, 16(1): 309-324. doi: 10.3934/jimo.2018153

On the M-eigenvalue estimation of fourth-order partially symmetric tensors

1. 

School of Mathematics and Information Science, Weifang University, Weifang Shandong, 261061, China

2. 

School of Management Science, Qufu Normal University, Rizhao Shandong, 276826, China

* Corresponding author: Haitao Che

Received  January 2018 Revised  May 2018 Published  September 2018

Fund Project: This project is supported by the Natural Science Foundation of China (11401438, 11671228, 11601261, 11571120), Shandong Provincial Natural Science Foundation (ZR2016AQ12), Project of Shandong Province Higher Educational Science and Technology Program(Grant No. J14LI52), and China Postdoctoral Science Foundation (Grant No. 2017M622163, 2018T110669).

In this article, the M-eigenvalue of fourth-order partially symmetric tensors is estimated by choosing different components of M-eigenvector. As an application, some upper bounds for the M-spectral radius of nonnegative fourth-order partially symmetric tensors are discussed, which are sharper than existing upper bounds. Finally, numerical examples are reported to verify the obtained results.

Citation: Haitao Che, Haibin Chen, Yiju Wang. On the M-eigenvalue estimation of fourth-order partially symmetric tensors. Journal of Industrial & Management Optimization, 2020, 16 (1) : 309-324. doi: 10.3934/jimo.2018153
References:
[1]

K. ChangK. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.  doi: 10.1016/j.laa.2013.02.013.  Google Scholar

[2]

H. ChenZ. Huang and L. Qi, Copositivity detection of tensors: Theory and algorithm, J. Optimiz. Theory Appl., 174 (2017), 746-761.  doi: 10.1007/s10957-017-1131-2.  Google Scholar

[3]

H. Chen, Y. Chen, G. Li and L. Qi, A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numer. Linear Algebra Appl., 25 (2018), e2125, 16pp. doi: 10.1002/nla.2125.  Google Scholar

[4]

H. ChenZ. Huang and L. Qi, Copositive tensor detection and its applications in physics and hypergraphs, Comput. Optim. Appl., 69 (2018), 133-158.  doi: 10.1007/s10589-017-9938-1.  Google Scholar

[5]

H. Chen and Y. Wang, On computing minimal H-eigenvalue of sign-structured tensors, Front. Math. China, 12 (2017), 1289-1302.  doi: 10.1007/s11464-017-0645-0.  Google Scholar

[6]

H. ChenL. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13 (2018), 255-276.  doi: 10.1007/s11464-018-0681-4.  Google Scholar

[7]

S. Chirit$\check{a}$A. Danescu and M. Ciarletta, On the srtong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 87 (2007), 1-27.  doi: 10.1007/s10659-006-9096-7.  Google Scholar

[8]

B. Dacorogna, Necessary and sufficient conditions for strong ellipticity for isotropic functions in any dimension, Discrete Cont. Dyn-B, 1 (2001), 257-263.  doi: 10.3934/dcdsb.2001.1.257.  Google Scholar

[9]

W. Ding, J. Liu, L. Qi and H. Yan, Elasticity M-tensors and the strong ellipticity condition, preprint, arXiv: 1705.09911. Google Scholar

[10]

D. HanH. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 97 (2009), 1-13.  doi: 10.1007/s10659-009-9205-5.  Google Scholar

[11]

J. He and T. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.  doi: 10.1016/j.aml.2014.07.012.  Google Scholar

[12]

Z. Huang and L. Qi, Positive definiteness of paired symmetric tensors and elasticity tensors, J. Comput. Appl. Math., 338 (2018), 22-43.  doi: 10.1016/j.cam.2018.01.025.  Google Scholar

[13]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elasticity, 5 (1975), 341-361.  doi: 10.1007/BF00126996.  Google Scholar

[14]

J. K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Rational Mech. Anal., 63 (1977), 321-336.  doi: 10.1007/BF00279991.  Google Scholar

[15]

E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.  doi: 10.1137/S0895479801387413.  Google Scholar

[16]

C. Padovani, Strong ellipticity of transversely isotropic elasticity tensors, Meccanica, 37 (2002), 515-525.  doi: 10.1023/A:1020946506754.  Google Scholar

[17]

L. QiH. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Front. Math. China, 4 (2009), 349-364.  doi: 10.1007/s11464-009-0016-6.  Google Scholar

[18]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[19]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.  doi: 10.1137/130909135.  Google Scholar

[20]

J. R. Walton and J. P. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlin. Mech., 38 (2003), 441-455.  doi: 10.1016/S0020-7462(01)00066-X.  Google Scholar

[21]

Y. WangL. Caccetta and G. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numer. Linear Algebra and Appl., 22 (2015), 1059-1076.  doi: 10.1002/nla.1996.  Google Scholar

[22]

X. WangH. Chen and Y. Wang, Solution structures of tensor complementarity problem, Front. Math. China, 13 (2018), 935-945.  doi: 10.1007/s11464-018-0675-2.  Google Scholar

[23]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.  doi: 10.1002/nla.633.  Google Scholar

[24]

Y. WangK. Zhang and H. Sun, Criteria for strong H-tensors, Front. Mathe. China, 11 (2016), 577-592.  doi: 10.1007/s11464-016-0525-z.  Google Scholar

[25]

G. WangG. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Cont. Dyn-B, 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.  Google Scholar

[26]

T. Zhang and G. Golub, Rank-1 approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550.  doi: 10.1137/S0895479899352045.  Google Scholar

[27]

K. Zhang and Y. Wang, An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Comput. Appl. Math., 305 (2016), 1-10.  doi: 10.1016/j.cam.2016.03.025.  Google Scholar

[28]

G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear Algebra Appl., 25 (2018), e2134, 10pp. doi: 10.1002/nla.2134.  Google Scholar

show all references

References:
[1]

K. ChangK. Pearson and T. Zhang, Some variational principles for Z-eigenvalues of nonnegative tensors, Linear Algebra Appl., 438 (2013), 4166-4182.  doi: 10.1016/j.laa.2013.02.013.  Google Scholar

[2]

H. ChenZ. Huang and L. Qi, Copositivity detection of tensors: Theory and algorithm, J. Optimiz. Theory Appl., 174 (2017), 746-761.  doi: 10.1007/s10957-017-1131-2.  Google Scholar

[3]

H. Chen, Y. Chen, G. Li and L. Qi, A semi-definite program approach for computing the maximum eigenvalue of a class of structured tensors and its applications in hypergraphs and copositivity test, Numer. Linear Algebra Appl., 25 (2018), e2125, 16pp. doi: 10.1002/nla.2125.  Google Scholar

[4]

H. ChenZ. Huang and L. Qi, Copositive tensor detection and its applications in physics and hypergraphs, Comput. Optim. Appl., 69 (2018), 133-158.  doi: 10.1007/s10589-017-9938-1.  Google Scholar

[5]

H. Chen and Y. Wang, On computing minimal H-eigenvalue of sign-structured tensors, Front. Math. China, 12 (2017), 1289-1302.  doi: 10.1007/s11464-017-0645-0.  Google Scholar

[6]

H. ChenL. Qi and Y. Song, Column sufficient tensors and tensor complementarity problems, Front. Math. China, 13 (2018), 255-276.  doi: 10.1007/s11464-018-0681-4.  Google Scholar

[7]

S. Chirit$\check{a}$A. Danescu and M. Ciarletta, On the srtong ellipticity of the anisotropic linearly elastic materials, J. Elasticity, 87 (2007), 1-27.  doi: 10.1007/s10659-006-9096-7.  Google Scholar

[8]

B. Dacorogna, Necessary and sufficient conditions for strong ellipticity for isotropic functions in any dimension, Discrete Cont. Dyn-B, 1 (2001), 257-263.  doi: 10.3934/dcdsb.2001.1.257.  Google Scholar

[9]

W. Ding, J. Liu, L. Qi and H. Yan, Elasticity M-tensors and the strong ellipticity condition, preprint, arXiv: 1705.09911. Google Scholar

[10]

D. HanH. Dai and L. Qi, Conditions for strong ellipticity of anisotropic elastic materials, J. Elasticity, 97 (2009), 1-13.  doi: 10.1007/s10659-009-9205-5.  Google Scholar

[11]

J. He and T. Huang, Upper bound for the largest Z-eigenvalue of positive tensors, Appl. Math. Lett., 38 (2014), 110-114.  doi: 10.1016/j.aml.2014.07.012.  Google Scholar

[12]

Z. Huang and L. Qi, Positive definiteness of paired symmetric tensors and elasticity tensors, J. Comput. Appl. Math., 338 (2018), 22-43.  doi: 10.1016/j.cam.2018.01.025.  Google Scholar

[13]

J. K. Knowles and E. Sternberg, On the ellipticity of the equations of non-linear elastostatics for a special material, J. Elasticity, 5 (1975), 341-361.  doi: 10.1007/BF00126996.  Google Scholar

[14]

J. K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Rational Mech. Anal., 63 (1977), 321-336.  doi: 10.1007/BF00279991.  Google Scholar

[15]

E. Kofidis and P. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix Anal. Appl., 23 (2002), 863-884.  doi: 10.1137/S0895479801387413.  Google Scholar

[16]

C. Padovani, Strong ellipticity of transversely isotropic elasticity tensors, Meccanica, 37 (2002), 515-525.  doi: 10.1023/A:1020946506754.  Google Scholar

[17]

L. QiH. Dai and D. Han, Conditions for strong ellipticity and M-eigenvalues, Front. Math. China, 4 (2009), 349-364.  doi: 10.1007/s11464-009-0016-6.  Google Scholar

[18]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.  doi: 10.1016/j.jsc.2005.05.007.  Google Scholar

[19]

Y. Song and L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1581-1595.  doi: 10.1137/130909135.  Google Scholar

[20]

J. R. Walton and J. P. Wilber, Sufficient conditions for strong ellipticity for a class of anisotropic materials, Int. J. Nonlin. Mech., 38 (2003), 441-455.  doi: 10.1016/S0020-7462(01)00066-X.  Google Scholar

[21]

Y. WangL. Caccetta and G. Zhou, Convergence analysis of a block improvement method for polynomial optimization over unit spheres, Numer. Linear Algebra and Appl., 22 (2015), 1059-1076.  doi: 10.1002/nla.1996.  Google Scholar

[22]

X. WangH. Chen and Y. Wang, Solution structures of tensor complementarity problem, Front. Math. China, 13 (2018), 935-945.  doi: 10.1007/s11464-018-0675-2.  Google Scholar

[23]

Y. WangL. Qi and X. Zhang, A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor, Numer. Linear Algebra Appl., 16 (2009), 589-601.  doi: 10.1002/nla.633.  Google Scholar

[24]

Y. WangK. Zhang and H. Sun, Criteria for strong H-tensors, Front. Mathe. China, 11 (2016), 577-592.  doi: 10.1007/s11464-016-0525-z.  Google Scholar

[25]

G. WangG. Zhou and L. Caccetta, Z-eigenvalue inclusion theorems for tensors, Discrete Cont. Dyn-B, 22 (2017), 187-198.  doi: 10.3934/dcdsb.2017009.  Google Scholar

[26]

T. Zhang and G. Golub, Rank-1 approximation of higher-order tensors, SIAM J. Matrix Anal. Appl., 23 (2001), 534-550.  doi: 10.1137/S0895479899352045.  Google Scholar

[27]

K. Zhang and Y. Wang, An H-tensor based iterative scheme for identifying the positive definiteness of multivariate homogeneous forms, J. Comput. Appl. Math., 305 (2016), 1-10.  doi: 10.1016/j.cam.2016.03.025.  Google Scholar

[28]

G. Zhou, G. Wang, L. Qi and M. Alqahtani, A fast algorithm for the spectral radii of weakly reducible nonnegative tensors, Numer. Linear Algebra Appl., 25 (2018), e2134, 10pp. doi: 10.1002/nla.2134.  Google Scholar

Figure 1.  The comparisons of $ \Gamma(\mathcal{C})$, $ \mathcal{L}(\mathcal{C})$, $ \mathcal{M}(\mathcal{C})$ and $ \mathcal{N}(\mathcal{C})$
Figure 2.  The comparisons of $ \Gamma(\mathcal{C})$, $ \mathcal{L}(\mathcal{C})$ and $ \mathcal{M}(\mathcal{C})$
Figure 3.  The comparisons of $ \Gamma(\mathcal{C})$, $ \mathcal{L}(\mathcal{C})$ and $ \mathcal{M}(\mathcal{C})$
[1]

Jun He, Guangjun Xu, Yanmin Liu. New Z-eigenvalue localization sets for tensors with applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021058

[2]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[3]

Caili Sang, Zhen Chen. Optimal $ Z $-eigenvalue inclusion intervals of tensors and their applications. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021075

[4]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[5]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[6]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[9]

Hong-Yi Miao, Li Wang. Preconditioned inexact Newton-like method for large nonsymmetric eigenvalue problems. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021012

[10]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[11]

Jiangang Qi, Bing Xie. Extremum estimates of the $ L^1 $-norm of weights for eigenvalue problems of vibrating string equations based on critical equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3505-3516. doi: 10.3934/dcdsb.2020243

[12]

Thomas Barthelmé, Andrey Gogolev. Centralizers of partially hyperbolic diffeomorphisms in dimension 3. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021044

[13]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[14]

Jihoon Lee, Ngocthach Nguyen. Flows with the weak two-sided limit shadowing property. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021040

[15]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036

[16]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[17]

Krzysztof A. Krakowski, Luís Machado, Fátima Silva Leite. A unifying approach for rolling symmetric spaces. Journal of Geometric Mechanics, 2021, 13 (1) : 145-166. doi: 10.3934/jgm.2020016

[18]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[19]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006

[20]

Raj Kumar, Maheshanand Bhaintwal. Duadic codes over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020135

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (259)
  • HTML views (1018)
  • Cited by (2)

Other articles
by authors

[Back to Top]