January  2020, 16(1): 387-396. doi: 10.3934/jimo.2018158

Option pricing formulas for generalized fuzzy stock model

College of Mathematics and Information Science, Hebei University, Baoding 071002, China

* Corresponding author: Cuilian You

Received  June 2018 Revised  June 2018 Published  January 2020 Early access  September 2018

Fund Project: The first author is supported by NSFC grant (No.61773150) and Key Lab. of Machine Learning and Computational Intelligence, College of Mathematics and Information Science, Hebei University, Baoding, 071002, China.

Fuzzy stock model has been studied by many scholars in recent years, in which option pricing problem is the most important part. In this paper, we studied option pricing for a new generalized fuzzy stock model. Based on credibility theory, pricing formulas of European option and American option were obtained.

Citation: Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial and Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158
References:
[1]

F. Black and M. Scholes, The pricing of option and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.

[2]

X. Chen and Z. Qin, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151. 

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process\/071110.pdf.

[4]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process\/080831.pdf.

[5]

Z. DingM. Ma and A. Kandel, Exsitence of the solutions of fuzzy differential equations with parameters, Information Sciences, 99 (1999), 205-217.  doi: 10.1016/S0020-0255(96)00279-4.

[6]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 2 (2008), 243-247. 

[7]

X. Gao and X. Chen, Option pricing formula for generalized stock models, 2008. Available from: http://orsc.edu.cn/process/080317.pdf.

[8]

H. Hu, Power option pricing model for stock price follow geometric fractional Liu process, Journal of Henan Normal University (Natural Science Edition), 41 (2013), 1-5. 

[9]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.  doi: 10.1016/0165-0114(87)90029-7.

[10]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16. 

[11]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450. 

[12]

R. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.  doi: 10.2307/3003143.

[13]

J. Peng, A general stock model for fuzzy markets, Journal of Uncertain Systems, 2 (2008), 248-254. 

[14]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain System, 2 (2008), 17-21. 

[15]

Z. Qin and X. Li, Fuzzy calculus for finance, 2008. Available from: http://orsc.edu.cn/process\/fc.pdf.

[16]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22.  doi: 10.7858/eamj.2013.002.

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 9 (2016), 1396-1401.  doi: 10.22436/jnsa.009.03.63.

[18]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University (Natural Science Edition), 31 (2011), 337-340. 

[19]

C. YouW. Wang and H. Huo, Existence and unqiueness theorems for fuzzy differential equation, Journal of Uncertain Systems, 7 (2013), 303-315. 

[20]

L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.

show all references

References:
[1]

F. Black and M. Scholes, The pricing of option and corporate liabilities, Journal of Political Economy, 81 (1973), 637-654.  doi: 10.1086/260062.

[2]

X. Chen and Z. Qin, A new existence and uniqueness theorem for fuzzy differential equation, International Journal of Fuzzy Systems, 13 (2011), 148-151. 

[3]

W. Dai, Reflection principle of Liu process, 2007. Available from: http://orsc.edu.cn/process\/071110.pdf.

[4]

W. Dai, Lipschitz continuity of Liu process, 2008. Available from: http://orsc.edu.cn/process\/080831.pdf.

[5]

Z. DingM. Ma and A. Kandel, Exsitence of the solutions of fuzzy differential equations with parameters, Information Sciences, 99 (1999), 205-217.  doi: 10.1016/S0020-0255(96)00279-4.

[6]

J. Gao and X. Gao, A new stock model for credibilistic option pricing, Journal of Uncertain Systems, 2 (2008), 243-247. 

[7]

X. Gao and X. Chen, Option pricing formula for generalized stock models, 2008. Available from: http://orsc.edu.cn/process/080317.pdf.

[8]

H. Hu, Power option pricing model for stock price follow geometric fractional Liu process, Journal of Henan Normal University (Natural Science Edition), 41 (2013), 1-5. 

[9]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.  doi: 10.1016/0165-0114(87)90029-7.

[10]

B. Liu, Fuzzy process, hybrid process and uncertain process, Journal of Uncertain Systems, 2 (2008), 3-16. 

[11]

B. Liu and Y. K. Liu, Expected value of fuzzy variable and fuzzy expected value models, IEEE Transactions on Fuzzy Systems, 10 (2002), 445-450. 

[12]

R. Merton, Theory of rational option pricing, Bell Journal of Economics and Management Science, 4 (1973), 141-183.  doi: 10.2307/3003143.

[13]

J. Peng, A general stock model for fuzzy markets, Journal of Uncertain Systems, 2 (2008), 248-254. 

[14]

Z. Qin and X. Li, Option pricing formula for fuzzy financial market, Journal of Uncertain System, 2 (2008), 17-21. 

[15]

Z. Qin and X. Li, Fuzzy calculus for finance, 2008. Available from: http://orsc.edu.cn/process\/fc.pdf.

[16]

C. YouH. Huo and W. Wang, Multi-dimensional Liu process, differential and integral, East Asian Mathematical Journal, 29 (2013), 13-22.  doi: 10.7858/eamj.2013.002.

[17]

C. YouH. Ma and H. Huo, A new kind of generalized fuzzy integrals, Journal of Nonlinear Science and Applications, 9 (2016), 1396-1401.  doi: 10.22436/jnsa.009.03.63.

[18]

C. You and G. Wang, Properties of a new kind of fuzzy integral, Journal of Hebei University (Natural Science Edition), 31 (2011), 337-340. 

[19]

C. YouW. Wang and H. Huo, Existence and unqiueness theorems for fuzzy differential equation, Journal of Uncertain Systems, 7 (2013), 303-315. 

[20]

L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.

[1]

Cuilian You, Le Bo. Pricing of European call option under fuzzy interest rate. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022033

[2]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

[3]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[4]

Seiyed Hadi Abtahi, Hamidreza Rahimi, Maryam Mosleh. Solving fuzzy volterra-fredholm integral equation by fuzzy artificial neural network. Mathematical Foundations of Computing, 2021, 4 (3) : 209-219. doi: 10.3934/mfc.2021013

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3529-3539. doi: 10.3934/dcdss.2020432

[6]

Andrej V. Plotnikov, Tatyana A. Komleva, Liliya I. Plotnikova. The averaging of fuzzy hyperbolic differential inclusions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1987-1998. doi: 10.3934/dcdsb.2017117

[7]

Muslim Malik, Anjali Rose, Anil Kumar. Controllability of Sobolev type fuzzy differential equation with non-instantaneous impulsive condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 387-407. doi: 10.3934/dcdss.2021068

[8]

Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial and Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046

[9]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[10]

Dariush Mohamadi Zanjirani, Majid Esmaelian. An integrated approach based on Fuzzy Inference System for scheduling and process planning through multiple objectives. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1235-1259. doi: 10.3934/jimo.2018202

[11]

Junjie Peng, Ning Chen, Jiayang Dai, Weihua Gui. A goethite process modeling method by Asynchronous Fuzzy Cognitive Network based on an improved constrained chicken swarm optimization algorithm. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1269-1287. doi: 10.3934/jimo.2020021

[12]

Feyza Gürbüz, Panos M. Pardalos. A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining. Journal of Industrial and Management Optimization, 2012, 8 (2) : 285-297. doi: 10.3934/jimo.2012.8.285

[13]

Huiqin Zhang, JinChun Wang, Meng Wang, Xudong Chen. Integration of cuckoo search and fuzzy support vector machine for intelligent diagnosis of production process quality. Journal of Industrial and Management Optimization, 2022, 18 (1) : 195-217. doi: 10.3934/jimo.2020150

[14]

Jiaquan Zhan, Fanyong Meng. Cores and optimal fuzzy communication structures of fuzzy games. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1187-1198. doi: 10.3934/dcdss.2019082

[15]

Xiaodong Liu, Wanquan Liu. The framework of axiomatics fuzzy sets based fuzzy classifiers. Journal of Industrial and Management Optimization, 2008, 4 (3) : 581-609. doi: 10.3934/jimo.2008.4.581

[16]

Juan J. Nieto, M. Victoria Otero-Espinar, Rosana Rodríguez-López. Dynamics of the fuzzy logistic family. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 699-717. doi: 10.3934/dcdsb.2010.14.699

[17]

Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619

[18]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics and Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010

[19]

Harish Garg. Some robust improved geometric aggregation operators under interval-valued intuitionistic fuzzy environment for multi-criteria decision-making process. Journal of Industrial and Management Optimization, 2018, 14 (1) : 283-308. doi: 10.3934/jimo.2017047

[20]

Erik Kropat, Gerhard Wilhelm Weber. Fuzzy target-environment networks and fuzzy-regression approaches. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 135-155. doi: 10.3934/naco.2018008

2021 Impact Factor: 1.411

Metrics

  • PDF downloads (283)
  • HTML views (993)
  • Cited by (0)

Other articles
by authors

[Back to Top]