[1]
|
H. Bai, G. Li, S. Li, Q. Li, Q. Jiang and L. Chang, Alternating optimization of sensing matrix and sparsifying dictionary for compressed sensing, IEEE Transactions on Signal Processing, 63 (2015), 1581-1594.
doi: 10.1109/TSP.2015.2399864.
|
[2]
|
R. G. Baraniuk, Compressive sensing [lecture notes], IEEE Signal Processing Magazine, 24 (2007), 118-121.
|
[3]
|
A. Belloni, V. Chernozhukov, L. Wang, et al., Pivotal estimation via square-root lasso in nonparametric regression, The Annals of Statistics, 42 (2014), 757-788.
doi: 10.1214/14-AOS1204.
|
[4]
|
S. Bhojanapalli, B. Neyshabur and N. Srebro, Global optimality of local search for low rank matrix recovery, arXiv: 1605.07221, 2016.
|
[5]
|
D. Bienstock and G. Munoz, Lp formulations for mixed-integer polynomial optimization problems, arXiv Preprint, 2015.
doi: 10.1137/15M1054079.
|
[6]
|
J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal and C. A. Sagastizábal, Numerical Optimization: Theoretical and Practical Aspects, Springer Science & Business Media, 2006.
|
[7]
|
N. Boumal, V. Voroninski and A. S. Bandeira, The non-convex burer-monteiro approach works on smooth semidefinite programs, arXiv: 1606.04970, 2016.
|
[8]
|
S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization, Mathematical Programming, 95 (2003), 329-357.
doi: 10.1007/s10107-002-0352-8.
|
[9]
|
J.-F. Cai, E. J. Candès and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, 20 (2010), 1956-1982.
doi: 10.1137/080738970.
|
[10]
|
E. J. Candes, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, 346 (2008), 589-592.
doi: 10.1016/j.crma.2008.03.014.
|
[11]
|
E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Foundations of Computational Mathematics, 9 (2009), 717.
doi: 10.1007/s10208-009-9045-5.
|
[12]
|
E. J. Candes and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, 51 (2005), 4203-4215.
doi: 10.1109/TIT.2005.858979.
|
[13]
|
E. J. Candès and T. Tao, The power of convex relaxation: Near-optimal matrix completion, IEEE Transactions on Information Theory, 56 (2010), 2053-2080.
doi: 10.1109/TIT.2010.2044061.
|
[14]
|
E. J. Candès and M. B. Wakin, An introduction to compressive sampling, IEEE Signal Processing Magazine, 25 (2008), 21-30.
|
[15]
|
S. Chrétien, An alternating l_1 approach to the compressed sensing problem, IEEE Signal Processing Letters, 17 (2010), 181-184.
|
[16]
|
S. Chrétien and S. Darses, Sparse recovery with unknown variance: A lasso-type approach, IEEE Transactions on Information Theory, 60 (2014), 3970-3988.
doi: 10.1109/TIT.2014.2301162.
|
[17]
|
S. Chrétien and T. Wei, Sensing tensors with gaussian filters, IEEE Transactions on Information Theory, 63 (2017), 843-852.
doi: 10.1109/TIT.2016.2633413.
|
[18]
|
M. A. Davenport and J. Romberg, An overview of low-rank matrix recovery from incomplete observations, IEEE Journal of Selected Topics in Signal Processing, 10 (2016), 608-622.
|
[19]
|
Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, 2012.
doi: 10.1515/dmvm-2014-0014.
|
[20]
|
G. Fazelnia, R. Madani and J. Lavaei, Convex relaxation for optimal distributed control problem, in 53rd IEEE Conference on Decision and Control, IEEE, 2014,896-903.
doi: 10.1109/TCNS.2014.2309732.
|
[21]
|
S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, Birkhäuser Basel, 2013.
doi: 10.1007/978-0-8176-4948-7.
|
[22]
|
R. Ge, C. Jin and Y. Zheng, No spurious local minima in nonconvex low rank problems: A unified geometric analysis, arXiv: 1704.00708, 2017.
|
[23]
|
C. Giraud, S. Huet and N. Verzelen, High-dimensional regression with unknown variance, Statistical Science, (2012), 500-518.
doi: 10.1214/12-STS398.
|
[24]
|
R. A. Jabr, Exploiting sparsity in sdp relaxations of the opf problem, IEEE Transactions on Power Systems, 2 (2012), 1138-1139.
|
[25]
|
C. Klauber and H. Zhu, Distribution system state estimation using semidefinite programming, in North American Power Symposium (NAPS), 2015, IEEE, 2015, 1-6.
|
[26]
|
O. Klopp and S. Gaiffas, High dimensional matrix estimation with unknown variance of the noise, arXiv: 1112.3055, 2011.
|
[27]
|
G. Kutyniok, Theory and applications of compressed sensing, GAMM-Mitteilungen, 36 (2013), 79-101.
doi: 10.1002/gamm.201310005.
|
[28]
|
J. Lavaei and S. H. Low, Zero duality gap in optimal power flow problem, IEEE Transactions on Power Systems, 27 (2012), 92-107.
|
[29]
|
Q. Li and G. Tang, The nonconvex geometry of low-rank matrix optimizations with general objective functions, arXiv: 1611.03060, 2016.
|
[30]
|
S. H. Low, Convex relaxation of optimal power flow, part ⅱ: Exactness, arXiv: 1405.0814, 2014.
doi: 10.1109/TCNS.2014.2323634.
|
[31]
|
R. Madani, J. Lavaei and R. Baldick, Convexification of power flow equations for power systems in presence of noisy measurements, preprint, 2016.
|
[32]
|
D. K. Molzahn, J. T. Holzer, B. C. Lesieutre and C. L. DeMarco, Implementation of a large-scale optimal power flow solver based on semidefinite programming, IEEE Transactions on Power Systems, 28 (2013), 3987-3998.
|
[33]
|
J. Nocedal and S. Wright, Numerical Optimization, Springer Science & Business Media, 2006.
|
[34]
|
D. Park, A. Kyrillidis, C. Caramanis and S. Sanghavi, Non-square matrix sensing without spurious local minima via the burer-monteiro approach, arXiv: 1609.03240, 2016.
|
[35]
|
J. Salmon, On High Dimensional Regression: Computational and Statistical Perspectives, PhD thesis, HDR, École normale supérieure Paris-Saclay, 2017.
|
[36]
|
F. Schweppe, Recursive state estimation: unknown but bounded errors and system inputs, IEEE Transactions on Automatic Control, 13 (1968), 22-28.
|
[37]
|
Q. Song, H. Ge, J. Caverlee and X. Hu, Tensor completion algorithms in big data analytics, arXiv: 1711.10105, 2017.
|
[38]
|
A. Virouleau, A. Guilloux, S. Gaïffas and M. Bogdan, High-dimensional robust regression and outliers detection with slope, arXiv: 1712.02640, 2017.
|
[39]
|
A. Wang and Z. Jin, Near-optimal noisy low-tubal-rank tensor completion via singular tube thresholding, in Data Mining Workshops (ICDMW), 2017 IEEE International Conference on, IEEE, 2017,553-560.
|
[40]
|
F. F. Wu, Power system state estimation: A survey, International Journal of Electrical Power & Energy Systems, 12 (1990), 80-87.
|
[41]
|
Y. Zhang, R. Madani and J. Lavaei, Power system state estimation with line measurements, 2016.
|
[42]
|
Z. Zhang and S. Aeron, Exact tensor completion using t-svd, IEEE Transactions on Signal Processing, 65 (2017), 1511-1526.
doi: 10.1109/TSP.2016.2639466.
|
[43]
|
H. Zhu and G. B. Giannakis, Power system nonlinear state estimation using distributed semidefinite programming, IEEE Journal of Selected Topics in Signal Processing, 8 (2014), 1039-1050.
|
[44]
|
Z. Zhu, Q. Li, G. Tang and M. B. Wakin, The global optimization geometry of nonsymmetric matrix factorization and sensing, arXiv: 1703.01256, 2017.
|
[45]
|
R. D. Zimmerman, C. E. Murillo-Sánchez and D. Gan, Matpower, PSERC.[Online]. Software Available at: http://www.pserc.cornell.edu/matpower, 1997.
|