This paper introduces two classes of parametric strong vector equilibrium problems whose approximate solution mappings are lower semicontinuous. In the first class, the objective set-valued maps satisfy some cone-convexity/cone-concavity assumptions, and in the second one, they satisfy some strongly proper cone-quasiconvexconcavity assumptions. All these mentioned concepts of generalized cone-convexity/cone-concavity/ strongly proper cone-quasiconvexconcavity are new and different from the traditional ones. Some upper semicontinuity/continuity results are also obtained. Applications to parametric weak u-set and l-set optimization problems and weak vector multivalued equilibrium problems are given.
Citation: |
L. Q. Anh
and P. Q. Khanh
, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008)
, 24-42.
doi: 10.1080/01630560701873068.![]() ![]() ![]() |
|
Q.H. Ansari, E. Kobis and J.-C. Yao,
Vector Variational Inequalities and Vector Optimization: Theory and Applications, Springer, Berlin, 2018.
doi: 10.1007/978-3-319-63049-6.![]() ![]() ![]() |
|
E. Blum
and W. Oettli
, From optimization and variational inequalities to equilibrium problems, The Mathem. Students., 63 (1994)
, 123-145.
![]() ![]() |
|
B. Chen
and N. J. Huang
, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Glob. Optim., 56 (2013)
, 1515-1528.
doi: 10.1007/s10898-012-9904-5.![]() ![]() ![]() |
|
C. R. Chen
, S. J. Li
and K. L. Teo
, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Glob. Optim., 45 (2009)
, 309-318.
doi: 10.1007/s10898-008-9376-9.![]() ![]() ![]() |
|
F. Ferro
, A minimax theorem for vector valued functions, part 2, J. Optim. Theory Appl., 68 (1991)
, 35-48.
doi: 10.1007/BF00939934.![]() ![]() ![]() |
|
Chr. Gerth
and P. Weidner
, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990)
, 297-320.
doi: 10.1007/BF00940478.![]() ![]() ![]() |
|
X. H. Gong
, Continuity of the solution set to parametric vector equilibrium problems, J. Optim. Theory Appl., 139 (2008)
, 35-46.
doi: 10.1007/s10957-008-9429-8.![]() ![]() ![]() |
|
E. Hernandez
and L. Rodriguez-Marin
, Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007)
, 1-18.
doi: 10.1016/j.jmaa.2006.01.033.![]() ![]() ![]() |
|
P. K. Khanh
and L. M. Luu
, Lower semicontinuity and upper semicontinuity of the solution sets and the approximate solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007)
, 329-339.
doi: 10.1007/s10957-007-9190-4.![]() ![]() ![]() |
|
K. Kimura
and J. C. Yao
, Sensitivity analysis of solution mappings of parametric vector-equilibrium problems, J. Glob. Optim., 41 (2008)
, 187-202.
doi: 10.1007/s10898-007-9210-9.![]() ![]() ![]() |
|
D. Kuroiwa
, On set-valued optimization, Nonlinear Anal., 47 (2001)
, 1395-1400.
doi: 10.1016/S0362-546X(01)00274-7.![]() ![]() ![]() |
|
S. J. Li
and Z. M. Fang
, Lower semicontinuity of the solution mappings to parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010)
, 507-515.
doi: 10.1007/s10957-010-9736-8.![]() ![]() ![]() |
|
X. B. Li
and S. J. Li
, Continuity of approximate solution mappings for parametric equilibrium problems, J. Glob. Optim., 51 (2011)
, 541-548.
doi: 10.1007/s10898-010-9641-6.![]() ![]() ![]() |
|
S. J. Li
, H. M. Liu
and C. L. Chen
, Lower semicontinuity of parametric generalized weak vector equilibrium problems, Bull. Austral. Math. Soc., 81 (2010)
, 85-95.
doi: 10.1017/S0004972709000628.![]() ![]() ![]() |
|
D. T. Luc,
Theory of Vector Optimization, Springer, Berlin, 1989.
doi: 10.1007/978-3-642-50280-4.![]() ![]() |
|
Z. Y. Peng
, X. M. Yang
and J. W. Peng
, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012)
, 256-264.
doi: 10.1007/s10957-011-9883-6.![]() ![]() ![]() |
|
Z. Y. Peng
, Y. Zhao
and X. Q. Yang
, Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems, Numer. Funct. Anal. Optim., 36 (2015)
, 481-500.
doi: 10.1080/01630563.2015.1013551.![]() ![]() ![]() |
|
P. H. Sach
, Stability property in bifunction-set optimization, J. Optim. Theory Appl., 177 (2018)
, 376-398.
doi: 10.1007/s10957-018-1280-y.![]() ![]() ![]() |
|
P. H. Sach
and N. B. Minh
, Continuity of solution mappings in some non-weak vector Ky Fan inequalities, J. Glob. Optim., 57 (2013)
, 1401-1418.
doi: 10.1007/s10898-012-0015-0.![]() ![]() ![]() |
|
P. H. Sach
and L. A. Tuan
, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013)
, 347-364.
doi: 10.1007/s10957-012-0105-7.![]() ![]() ![]() |
|
Y. D. Xu
and S. J. Li
, Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities, J. Ind. Manag. Optim., 13 (2017)
, 967-975.
doi: 10.3934/jimo.2016056.![]() ![]() ![]() |