This paper introduces two classes of parametric strong vector equilibrium problems whose approximate solution mappings are lower semicontinuous. In the first class, the objective set-valued maps satisfy some cone-convexity/cone-concavity assumptions, and in the second one, they satisfy some strongly proper cone-quasiconvexconcavity assumptions. All these mentioned concepts of generalized cone-convexity/cone-concavity/ strongly proper cone-quasiconvexconcavity are new and different from the traditional ones. Some upper semicontinuity/continuity results are also obtained. Applications to parametric weak u-set and l-set optimization problems and weak vector multivalued equilibrium problems are given.
Citation: |
L. Q. Anh and P. Q. Khanh , Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008) , 24-42. doi: 10.1080/01630560701873068. | |
Q.H. Ansari, E. Kobis and J.-C. Yao, Vector Variational Inequalities and Vector Optimization: Theory and Applications, Springer, Berlin, 2018. doi: 10.1007/978-3-319-63049-6. | |
E. Blum and W. Oettli , From optimization and variational inequalities to equilibrium problems, The Mathem. Students., 63 (1994) , 123-145. | |
B. Chen and N. J. Huang , Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Glob. Optim., 56 (2013) , 1515-1528. doi: 10.1007/s10898-012-9904-5. | |
C. R. Chen , S. J. Li and K. L. Teo , Solution semicontinuity of parametric generalized vector equilibrium problems, J. Glob. Optim., 45 (2009) , 309-318. doi: 10.1007/s10898-008-9376-9. | |
F. Ferro , A minimax theorem for vector valued functions, part 2, J. Optim. Theory Appl., 68 (1991) , 35-48. doi: 10.1007/BF00939934. | |
Chr. Gerth and P. Weidner , Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990) , 297-320. doi: 10.1007/BF00940478. | |
X. H. Gong , Continuity of the solution set to parametric vector equilibrium problems, J. Optim. Theory Appl., 139 (2008) , 35-46. doi: 10.1007/s10957-008-9429-8. | |
E. Hernandez and L. Rodriguez-Marin , Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007) , 1-18. doi: 10.1016/j.jmaa.2006.01.033. | |
P. K. Khanh and L. M. Luu , Lower semicontinuity and upper semicontinuity of the solution sets and the approximate solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007) , 329-339. doi: 10.1007/s10957-007-9190-4. | |
K. Kimura and J. C. Yao , Sensitivity analysis of solution mappings of parametric vector-equilibrium problems, J. Glob. Optim., 41 (2008) , 187-202. doi: 10.1007/s10898-007-9210-9. | |
D. Kuroiwa , On set-valued optimization, Nonlinear Anal., 47 (2001) , 1395-1400. doi: 10.1016/S0362-546X(01)00274-7. | |
S. J. Li and Z. M. Fang , Lower semicontinuity of the solution mappings to parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010) , 507-515. doi: 10.1007/s10957-010-9736-8. | |
X. B. Li and S. J. Li , Continuity of approximate solution mappings for parametric equilibrium problems, J. Glob. Optim., 51 (2011) , 541-548. doi: 10.1007/s10898-010-9641-6. | |
S. J. Li , H. M. Liu and C. L. Chen , Lower semicontinuity of parametric generalized weak vector equilibrium problems, Bull. Austral. Math. Soc., 81 (2010) , 85-95. doi: 10.1017/S0004972709000628. | |
D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4. | |
Z. Y. Peng , X. M. Yang and J. W. Peng , On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012) , 256-264. doi: 10.1007/s10957-011-9883-6. | |
Z. Y. Peng , Y. Zhao and X. Q. Yang , Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems, Numer. Funct. Anal. Optim., 36 (2015) , 481-500. doi: 10.1080/01630563.2015.1013551. | |
P. H. Sach , Stability property in bifunction-set optimization, J. Optim. Theory Appl., 177 (2018) , 376-398. doi: 10.1007/s10957-018-1280-y. | |
P. H. Sach and N. B. Minh , Continuity of solution mappings in some non-weak vector Ky Fan inequalities, J. Glob. Optim., 57 (2013) , 1401-1418. doi: 10.1007/s10898-012-0015-0. | |
P. H. Sach and L. A. Tuan , New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013) , 347-364. doi: 10.1007/s10957-012-0105-7. | |
Y. D. Xu and S. J. Li , Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities, J. Ind. Manag. Optim., 13 (2017) , 967-975. doi: 10.3934/jimo.2016056. |