March  2020, 16(2): 511-529. doi: 10.3934/jimo.2018165

Strong vector equilibrium problems with LSC approximate solution mappings

1. 

Thuongmai University, Hanoi, Vietnam

2. 

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10307 Hanoi, Vietnam

* Corresponding author: Pham Huu Sach

Received  December 2017 Revised  June 2018 Published  October 2018

Fund Project: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2016.11

This paper introduces two classes of parametric strong vector equilibrium problems whose approximate solution mappings are lower semicontinuous. In the first class, the objective set-valued maps satisfy some cone-convexity/cone-concavity assumptions, and in the second one, they satisfy some strongly proper cone-quasiconvexconcavity assumptions. All these mentioned concepts of generalized cone-convexity/cone-concavity/ strongly proper cone-quasiconvexconcavity are new and different from the traditional ones. Some upper semicontinuity/continuity results are also obtained. Applications to parametric weak u-set and l-set optimization problems and weak vector multivalued equilibrium problems are given.

Citation: Nguyen Ba Minh, Pham Huu Sach. Strong vector equilibrium problems with LSC approximate solution mappings. Journal of Industrial & Management Optimization, 2020, 16 (2) : 511-529. doi: 10.3934/jimo.2018165
References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008), 24-42.  doi: 10.1080/01630560701873068.  Google Scholar

[2]

Q.H. Ansari, E. Kobis and J.-C. Yao, Vector Variational Inequalities and Vector Optimization: Theory and Applications, Springer, Berlin, 2018. doi: 10.1007/978-3-319-63049-6.  Google Scholar

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathem. Students., 63 (1994), 123-145.   Google Scholar

[4]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Glob. Optim., 56 (2013), 1515-1528.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[5]

C. R. ChenS. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Glob. Optim., 45 (2009), 309-318.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[6]

F. Ferro, A minimax theorem for vector valued functions, part 2, J. Optim. Theory Appl., 68 (1991), 35-48.  doi: 10.1007/BF00939934.  Google Scholar

[7]

Chr. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[8]

X. H. Gong, Continuity of the solution set to parametric vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[9]

E. Hernandez and L. Rodriguez-Marin, Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007), 1-18.  doi: 10.1016/j.jmaa.2006.01.033.  Google Scholar

[10]

P. K. Khanh and L. M. Luu, Lower semicontinuity and upper semicontinuity of the solution sets and the approximate solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007), 329-339.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[11]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector-equilibrium problems, J. Glob. Optim., 41 (2008), 187-202.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[12]

D. Kuroiwa, On set-valued optimization, Nonlinear Anal., 47 (2001), 1395-1400.  doi: 10.1016/S0362-546X(01)00274-7.  Google Scholar

[13]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[14]

X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems, J. Glob. Optim., 51 (2011), 541-548.  doi: 10.1007/s10898-010-9641-6.  Google Scholar

[15]

S. J. LiH. M. Liu and C. L. Chen, Lower semicontinuity of parametric generalized weak vector equilibrium problems, Bull. Austral. Math. Soc., 81 (2010), 85-95.  doi: 10.1017/S0004972709000628.  Google Scholar

[16]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.  Google Scholar

[17]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264.  doi: 10.1007/s10957-011-9883-6.  Google Scholar

[18]

Z. Y. PengY. Zhao and X. Q. Yang, Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems, Numer. Funct. Anal. Optim., 36 (2015), 481-500.  doi: 10.1080/01630563.2015.1013551.  Google Scholar

[19]

P. H. Sach, Stability property in bifunction-set optimization, J. Optim. Theory Appl., 177 (2018), 376-398.  doi: 10.1007/s10957-018-1280-y.  Google Scholar

[20]

P. H. Sach and N. B. Minh, Continuity of solution mappings in some non-weak vector Ky Fan inequalities, J. Glob. Optim., 57 (2013), 1401-1418.  doi: 10.1007/s10898-012-0015-0.  Google Scholar

[21]

P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364.  doi: 10.1007/s10957-012-0105-7.  Google Scholar

[22]

Y. D. Xu and S. J. Li, Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities, J. Ind. Manag. Optim., 13 (2017), 967-975.  doi: 10.3934/jimo.2016056.  Google Scholar

show all references

References:
[1]

L. Q. Anh and P. Q. Khanh, Semicontinuity of the approximate solution sets of multivalued quasiequilibrium problems, Numer. Funct. Anal. Optim., 29 (2008), 24-42.  doi: 10.1080/01630560701873068.  Google Scholar

[2]

Q.H. Ansari, E. Kobis and J.-C. Yao, Vector Variational Inequalities and Vector Optimization: Theory and Applications, Springer, Berlin, 2018. doi: 10.1007/978-3-319-63049-6.  Google Scholar

[3]

E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathem. Students., 63 (1994), 123-145.   Google Scholar

[4]

B. Chen and N. J. Huang, Continuity of the solution mapping to parametric generalized vector equilibrium problems, J. Glob. Optim., 56 (2013), 1515-1528.  doi: 10.1007/s10898-012-9904-5.  Google Scholar

[5]

C. R. ChenS. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Glob. Optim., 45 (2009), 309-318.  doi: 10.1007/s10898-008-9376-9.  Google Scholar

[6]

F. Ferro, A minimax theorem for vector valued functions, part 2, J. Optim. Theory Appl., 68 (1991), 35-48.  doi: 10.1007/BF00939934.  Google Scholar

[7]

Chr. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization, J. Optim. Theory Appl., 67 (1990), 297-320.  doi: 10.1007/BF00940478.  Google Scholar

[8]

X. H. Gong, Continuity of the solution set to parametric vector equilibrium problems, J. Optim. Theory Appl., 139 (2008), 35-46.  doi: 10.1007/s10957-008-9429-8.  Google Scholar

[9]

E. Hernandez and L. Rodriguez-Marin, Nonconvex scalarization in set optimization with set-valued maps, J. Math. Anal. Appl., 325 (2007), 1-18.  doi: 10.1016/j.jmaa.2006.01.033.  Google Scholar

[10]

P. K. Khanh and L. M. Luu, Lower semicontinuity and upper semicontinuity of the solution sets and the approximate solution sets to parametric multivalued quasivariational inequalities, J. Optim. Theory Appl., 133 (2007), 329-339.  doi: 10.1007/s10957-007-9190-4.  Google Scholar

[11]

K. Kimura and J. C. Yao, Sensitivity analysis of solution mappings of parametric vector-equilibrium problems, J. Glob. Optim., 41 (2008), 187-202.  doi: 10.1007/s10898-007-9210-9.  Google Scholar

[12]

D. Kuroiwa, On set-valued optimization, Nonlinear Anal., 47 (2001), 1395-1400.  doi: 10.1016/S0362-546X(01)00274-7.  Google Scholar

[13]

S. J. Li and Z. M. Fang, Lower semicontinuity of the solution mappings to parametric generalized Ky Fan inequality, J. Optim. Theory Appl., 147 (2010), 507-515.  doi: 10.1007/s10957-010-9736-8.  Google Scholar

[14]

X. B. Li and S. J. Li, Continuity of approximate solution mappings for parametric equilibrium problems, J. Glob. Optim., 51 (2011), 541-548.  doi: 10.1007/s10898-010-9641-6.  Google Scholar

[15]

S. J. LiH. M. Liu and C. L. Chen, Lower semicontinuity of parametric generalized weak vector equilibrium problems, Bull. Austral. Math. Soc., 81 (2010), 85-95.  doi: 10.1017/S0004972709000628.  Google Scholar

[16]

D. T. Luc, Theory of Vector Optimization, Springer, Berlin, 1989. doi: 10.1007/978-3-642-50280-4.  Google Scholar

[17]

Z. Y. PengX. M. Yang and J. W. Peng, On the lower semicontinuity of the solution mappings to parametric weak generalized Ky Fan inequality, J. Optim. Theory Appl., 152 (2012), 256-264.  doi: 10.1007/s10957-011-9883-6.  Google Scholar

[18]

Z. Y. PengY. Zhao and X. Q. Yang, Semicontinuity of approximate solution mappings to parametric set-valued weak vector equilibrium problems, Numer. Funct. Anal. Optim., 36 (2015), 481-500.  doi: 10.1080/01630563.2015.1013551.  Google Scholar

[19]

P. H. Sach, Stability property in bifunction-set optimization, J. Optim. Theory Appl., 177 (2018), 376-398.  doi: 10.1007/s10957-018-1280-y.  Google Scholar

[20]

P. H. Sach and N. B. Minh, Continuity of solution mappings in some non-weak vector Ky Fan inequalities, J. Glob. Optim., 57 (2013), 1401-1418.  doi: 10.1007/s10898-012-0015-0.  Google Scholar

[21]

P. H. Sach and L. A. Tuan, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 157 (2013), 347-364.  doi: 10.1007/s10957-012-0105-7.  Google Scholar

[22]

Y. D. Xu and S. J. Li, Continuity of the solution mappings to parametric generalized non-weak vector Ky Fan inequalities, J. Ind. Manag. Optim., 13 (2017), 967-975.  doi: 10.3934/jimo.2016056.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[3]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[4]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[5]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[6]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[9]

Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135

[10]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[11]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[12]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[13]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[14]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[15]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[16]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[17]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[18]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[19]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[20]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (257)
  • HTML views (983)
  • Cited by (0)

Other articles
by authors

[Back to Top]