March  2020, 16(2): 531-551. doi: 10.3934/jimo.2018166

Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching

1. 

Department of Economics, The University of Melbourne, VIC 3010, Australia

2. 

School of Finance, Guangdong University of Foreign Studies, Guangzhou 510006, China

* Corresponding author: Haixiang Yao. Tel.:+86 2037105360

Received  January 2018 Revised  April 2018 Published  March 2020 Early access  October 2018

Fund Project: This research was supported by the National Natural Science Foundation of China (Nos. 71871071, 71471045, 71721001), the Natural Science Foundation of Guangdong Province of China (Nos. 2018B030311004, 2017A030313399, 2017A030313397), the Innovation Team Project of Guangdong Colleges and Universities (No. 2016WCXTD012), the Innovative School Project in Higher Education of Guangdong Province of China (No. GWTP-GC-2017-03)

The present article investigates a continuous-time mean-variance portfolio selection problem with regime-switching under the constraint of no-shorting. The literature along this line is essentially dominated by the Hamilton-Jacobi-Bellman (HJB) equation approach. However, in the presence of switching regimes, a system of HJB equations rather than a single equation need to be tackled concurrently, which might not be solvable in terms of classical solutions, or even not in the weaker viscosity sense as well. Instead, we first introduce a general result on the sign of geometric Brownian motion with jumps, then derive the efficient portfolio and frontier via the maximum principle approach; in particular, we observe, under a mild technical assumption on the initial conditions, that the no-shorting constraint will consistently be satisfied over the whole finite time horizon. Further numerical illustrations will be provided.

Citation: Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial and Management Optimization, 2020, 16 (2) : 531-551. doi: 10.3934/jimo.2018166
References:
[1]

L. H. Bai and H. Y. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Mathematical Methods of Operations Research, 68 (2008), 181-205.  doi: 10.1007/s00186-007-0195-4.

[2]

A. Bensoussan, K. J. Sung, S. C. H. Yam and S. P. Yung, A non-zero stochastic differential reinsurance game with mixed regime-switching, working paper, 2011.

[3]

J. N. BiJ. Y. Guo and L. H. Bai, Optimal multi-asset investment with no-shorting constraint under mean-variance criterion for an insurer, Journal of Systems Science and Complexity, 24 (2011), 291-307.  doi: 10.1007/s11424-011-8014-7.

[4]

T. Björk, Finite dimensional optimal filters for a class of Itô-processes with jumping parameters, Stochastics, 4 (1980), 167-183.  doi: 10.1080/17442508008833160.

[5]

E. Çanakoǧlu and S. Özekici, Portfolio selection in stochastic markets with HARA utility functions, European Journal of Operational Research, 201 (2010), 520-536.  doi: 10.1016/j.ejor.2009.03.017.

[6]

P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.

[7]

Y. Z. Hu, Multi-dimensional geometric Brownian motions, Onsager-Machlup functions, and applications to mathematical finance, Acta Mathematica Scientia, 20 (2000), 341-358.  doi: 10.1016/S0252-9602(17)30641-0.

[8]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.

[9]

X. Li and Z. Q. Xu, Continuous-time Markowitzs model with constraints on wealth and portfolio, Operations Research Letters, 44 (2016), 729-736.  doi: 10.1016/j.orl.2016.09.004.

[10]

X. LiX. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shoring constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.  doi: 10.1137/S0363012900378504.

[11]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. 

[12]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous - time case, Review of Economics and Statistics, 51 (1969), 247-257. 

[13]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.

[14]

P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, The Review of Economics and Statistics, 51 (1969), 239-246. 

[15]

L. R. Sotomayor and A. Cadenillas, Explicit solutions of consumption-investment problems in financial markets with regime switching, Mathematical Finance, 19 (2009), 251-279.  doi: 10.1111/j.1467-9965.2009.00366.x.

[16]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance: Mathematics and Economics, 53 (2013), 281-291.  doi: 10.1016/j.insmatheco.2013.05.008.

[17]

H. Wu and H. Chen, Nash equilibrium strategy for a multi-period mean-ariance portfolio selection problem with regime switching, Economic Modelling, 46 (2015), 79-90. 

[18]

G. L. Xu and S. E. Shreve, A duality method for optimal consumption and investment under short-selling prohibition: Ⅱ. Constant market coefficients, The Annals of Applied Probability, 2 (1992), 314-328.  doi: 10.1214/aoap/1177005706.

[19]

M. Zhang and P. Chen, Mean-variance portfolio selection with regime switching under shorting prohibition, Operations Research Letters, 44 (2016), 658-662.  doi: 10.1016/j.orl.2016.07.008.

[20]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.

show all references

References:
[1]

L. H. Bai and H. Y. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers, Mathematical Methods of Operations Research, 68 (2008), 181-205.  doi: 10.1007/s00186-007-0195-4.

[2]

A. Bensoussan, K. J. Sung, S. C. H. Yam and S. P. Yung, A non-zero stochastic differential reinsurance game with mixed regime-switching, working paper, 2011.

[3]

J. N. BiJ. Y. Guo and L. H. Bai, Optimal multi-asset investment with no-shorting constraint under mean-variance criterion for an insurer, Journal of Systems Science and Complexity, 24 (2011), 291-307.  doi: 10.1007/s11424-011-8014-7.

[4]

T. Björk, Finite dimensional optimal filters for a class of Itô-processes with jumping parameters, Stochastics, 4 (1980), 167-183.  doi: 10.1080/17442508008833160.

[5]

E. Çanakoǧlu and S. Özekici, Portfolio selection in stochastic markets with HARA utility functions, European Journal of Operational Research, 201 (2010), 520-536.  doi: 10.1016/j.ejor.2009.03.017.

[6]

P. ChenH. Yang and G. Yin, Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.  doi: 10.1016/j.insmatheco.2008.09.001.

[7]

Y. Z. Hu, Multi-dimensional geometric Brownian motions, Onsager-Machlup functions, and applications to mathematical finance, Acta Mathematica Scientia, 20 (2000), 341-358.  doi: 10.1016/S0252-9602(17)30641-0.

[8]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.  doi: 10.1111/1467-9965.00100.

[9]

X. Li and Z. Q. Xu, Continuous-time Markowitzs model with constraints on wealth and portfolio, Operations Research Letters, 44 (2016), 729-736.  doi: 10.1016/j.orl.2016.09.004.

[10]

X. LiX. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shoring constraints, SIAM Journal on Control and Optimization, 40 (2002), 1540-1555.  doi: 10.1137/S0363012900378504.

[11]

H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. 

[12]

R. C. Merton, Lifetime portfolio selection under uncertainty: The continuous - time case, Review of Economics and Statistics, 51 (1969), 247-257. 

[13]

R. C. Merton, Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory, 3 (1971), 373-413.  doi: 10.1016/0022-0531(71)90038-X.

[14]

P. A. Samuelson, Lifetime portfolio selection by dynamic stochastic programming, The Review of Economics and Statistics, 51 (1969), 239-246. 

[15]

L. R. Sotomayor and A. Cadenillas, Explicit solutions of consumption-investment problems in financial markets with regime switching, Mathematical Finance, 19 (2009), 251-279.  doi: 10.1111/j.1467-9965.2009.00366.x.

[16]

J. WeiK. C. WongS. C. P. Yam and S. P. Yung, Markowitz's mean-variance asset-liability management with regime switching: A time-consistent approach, Insurance: Mathematics and Economics, 53 (2013), 281-291.  doi: 10.1016/j.insmatheco.2013.05.008.

[17]

H. Wu and H. Chen, Nash equilibrium strategy for a multi-period mean-ariance portfolio selection problem with regime switching, Economic Modelling, 46 (2015), 79-90. 

[18]

G. L. Xu and S. E. Shreve, A duality method for optimal consumption and investment under short-selling prohibition: Ⅱ. Constant market coefficients, The Annals of Applied Probability, 2 (1992), 314-328.  doi: 10.1214/aoap/1177005706.

[19]

M. Zhang and P. Chen, Mean-variance portfolio selection with regime switching under shorting prohibition, Operations Research Letters, 44 (2016), 658-662.  doi: 10.1016/j.orl.2016.07.008.

[20]

X. Y. Zhou and G. Yin, Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.  doi: 10.1137/S0363012902405583.

Figure 1.  The value of the stochastic process $P(t, \alpha(t))[x(t)+(\lambda-z)H(t, \alpha(t))]$
Figure 2.  A sample path of the efficient portfolio $u^{*} = (u_1, u_2, u_3)'$
Figure 3.  The process $-[x(t)+(\lambda^{*}-z)H(t, \alpha(t))]$
Figure 4.  The corresponding efficient frontier
Figure 5.  The effects of initial market mode $i_0$
[1]

Ishak Alia, Mohamed Sofiane Alia. Open-loop equilibrium strategy for mean-variance Portfolio selection with investment constraints in a non-Markovian regime-switching jump-diffusion model. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022048

[2]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132

[3]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021074

[4]

Fuke Wu, George Yin, Zhuo Jin. Kolmogorov-type systems with regime-switching jump diffusion perturbations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2293-2319. doi: 10.3934/dcdsb.2016048

[5]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[6]

Mourad Bellassoued, Raymond Brummelhuis, Michel Cristofol, Éric Soccorsi. Stable reconstruction of the volatility in a regime-switching local-volatility model. Mathematical Control and Related Fields, 2020, 10 (1) : 189-215. doi: 10.3934/mcrf.2019036

[7]

Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control and Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022

[8]

Zhuo Jin, Linyi Qian. Lookback option pricing for regime-switching jump diffusion models. Mathematical Control and Related Fields, 2015, 5 (2) : 237-258. doi: 10.3934/mcrf.2015.5.237

[9]

Wensheng Yin, Jinde Cao, Yong Ren. Inverse optimal control of regime-switching jump diffusions. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021034

[10]

Engel John C Dela Vega, Robert J Elliott. Conditional coherent risk measures and regime-switching conic pricing. Probability, Uncertainty and Quantitative Risk, 2021, 6 (4) : 267-300. doi: 10.3934/puqr.2021014

[11]

Jun Li, Fubao Xi. Exponential ergodicity for regime-switching diffusion processes in total variation norm. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021309

[12]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[13]

Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers. Journal of Industrial and Management Optimization, 2010, 6 (3) : 483-496. doi: 10.3934/jimo.2010.6.483

[14]

Nan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Markowitz's mean-variance optimization with investment and constrained reinsurance. Journal of Industrial and Management Optimization, 2017, 13 (1) : 375-397. doi: 10.3934/jimo.2016022

[15]

Zhuo Jin, George Yin, Hailiang Yang. Numerical methods for dividend optimization using regime-switching jump-diffusion models. Mathematical Control and Related Fields, 2011, 1 (1) : 21-40. doi: 10.3934/mcrf.2011.1.21

[16]

Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079

[17]

Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072

[18]

Jiapeng Liu, Ruihua Liu, Dan Ren. Investment and consumption in regime-switching models with proportional transaction costs and log utility. Mathematical Control and Related Fields, 2017, 7 (3) : 465-491. doi: 10.3934/mcrf.2017017

[19]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. Valuing equity-linked death benefits with a threshold expense structure under a regime-switching Lévy model. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022007

[20]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial and Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180

2020 Impact Factor: 1.801

Metrics

  • PDF downloads (460)
  • HTML views (1232)
  • Cited by (1)

Other articles
by authors

[Back to Top]