Instance set | Best improvement | First improvement | ||
CPU | Gap | CPU | Gap | |
I40 | 827.63 | 5.20 | 29.22 | 5.18 |
O40 | 796.54 | 0.62 | 35.18 | 0.58 |
In less than truckload transportation, shippers collaborate to reduce their logistics costs by consolidating their transportation requests in the procurement of transportation services from a carrier for serving the requests. In this paper, we study shipper collaboration in forward and reverse logistics, in which multiple shippers with forward or/and reverse logistics operations consolidate their transportation requests. In the forward and reverse logistics, manufacturers deliver new products to their customers and used products are collected from customers and transported to remanufacturers for repair or reproduction. This gives rise to a new vehicle routing problem with pickup and delivery requests and three different types of depots (product depots, vehicle depots and recycle depots). A hybrid approach combining greedy randomized adaptive search procedure (GRASP) and iterated local search (ILS) is proposed to find a near optimal solution of the problem. Numerical experiments on a large set of randomly generated instances with different problem sizes demonstrate that shipper collaboration in forward and reverse logistics can realize significant cost savings compared with the isolated operation of each shipper without cooperation, and the proposed approach is effective in the sense that it can find a high quality solution in a reasonable computation time.
Citation: |
Table 1. The comparison of the first improvement and the best improvement
Instance set | Best improvement | First improvement | ||
CPU | Gap | CPU | Gap | |
I40 | 827.63 | 5.20 | 29.22 | 5.18 |
O40 | 796.54 | 0.62 | 35.18 | 0.58 |
Table 2. The comparison of two strategies
Instance set | General strategy | Speedup strategy | ||
CPU | Gap | CPU | Gap | |
I40 | 327.63 | 5.18 | 29.22 | 5.18 |
O40 | 296.54 | 0.61 | 35.18 | 0.58 |
Table 3. Parameter tuning according to instance size
Description | Parameter | Value | |||
Small instances (20 requests) |
Medium instances (40 requests) |
Large instances (60 requests) |
Large instances (100 requests) | ||
Number of GRASP iterations | np | 10 | 10 | 15 | 15 |
Number of ILS iterations | ni | 5 | 10 | 15 | 20 |
RCL size | nrcl | 3 | 5 | 7 | 7 |
Table 5. Results for comparison of GRASP-ILS and CPLEX solver
Instance set | CPLEX | GRASP-ILS | ||||||
ImpIni | GapLB | CPU | ImpIni | ImpCplex | GapLB | CPU | ||
I20 | -- | 0.00 | 2101.07 | -- | 0.00 | 0.00 | 3.17 | |
O20 | -- | 0.00 | 1077.42 | -- | 0.00 | 0.00 | 1.92 | |
A20 | -- | 0.00 | 1350.15 | -- | 0.00 | 0.00 | 2.49 | |
Average | 0.00 | 1509.55 | 0.00 | 0.00 | 2.53 | |||
I40 | 1.44 | 28.47 | 21600.00 | 6.57 | 5.18 | 24.58 | 29.22 | |
O40 | 6.02 | 10.78 | 21600.00 | 6.37 | 0.58 | 10.27 | 35.18 | |
A40 | 3.33 | 20.89 | 21600.00 | 6.61 | 3.58 | 17.91 | 29.94 | |
Average | 3.60 | 20.05 | 21600.00 | 6.52 | 3.11 | 17.59 | 31.45 | |
I60 | 2.74 | 34.25 | 21600.00 | 12.45 | 9.99 | 26.73 | 125.42 | |
O60 | 4.77 | 28.38 | 21600.00 | 16.85 | 12.63 | 18.00 | 144.84 | |
A60 | 3.35 | 28.74 | 21600.00 | 14.78 | 11.81 | 19.18 | 148.35 | |
Average | 3.62 | 30.46 | 21600.00 | 13.70 | 12.47 | 21.30 | 139.54 | |
I100 | 1.62 | 40.24 | 21600.00 | 16.85 | 13.00 | 31.27 | 246.32 | |
O100 | 2.57 | 38.25 | 21600.00 | 21.11 | 15.24 | 23.55 | 292.72 | |
A100 | 1.83 | 34.56 | 21600.00 | 19.52 | 14.68 | 23.17 | 282.45 | |
Average | 2.01 | 37.68 | 21600.00 | 19.16 | 14.31 | 26.00 | 273.83 |
Table 6. Summarized results for comparison among GRASP-ILS, GRASP and ILS
Instance set | ||
ImpGRASP-ILS, GRASP | ImpGRASP-ILS, ILS | |
I20 | 6.51 | 3.17 |
O20 | 1.87 | 0.86 |
A20 | 7.65 | 3.68 |
Average | 5.34 | 2.57 |
I40 | 3.95 | 3.71 |
O40 | 3.00 | 3.23 |
A40 | 6.75 | 3.62 |
Average | 4.57 | 3.52 |
I60 | 4.09 | 2.65 |
O60 | 7.42 | 0.73 |
A60 | 6.35 | 4.64 |
Average | 5.95 | 2.67 |
I100 | 7.20 | 4.19 |
O100 | 6.59 | 3.78 |
A100 | 5.00 | 4.06 |
Average | 6.26 | 4.01 |
Table 7. Summarized results for deviations among GRASP-ILS, GRASP and ILS
Instance set | GRASP | ILS | GRASP-ILS |
Dev | Dev | Dev | |
I20 | 1.93 | 4.31 | 0.37 |
O20 | 0.26 | 0.43 | 0.01 |
A20 | 1.21 | 5.23 | 0.76 |
Average | 1.13 | 3.32 | 0.38 |
I40 | 4.46 | 7.73 | 0.42 |
O40 | 3.81 | 7.01 | 0.44 |
A40 | 3.68 | 8.65 | 0.89 |
Average | 3.98 | 7.80 | 0.58 |
I60 | 6.92 | 11.58 | 0.51 |
O60 | 4.80 | 6.72 | 0.81 |
A60 | 4.09 | 8.66 | 0.92 |
Average | 5.27 | 8.99 | 0.75 |
I100 | 7.04 | 12.38 | 0.88 |
O100 | 5.25 | 8.96 | 1.16 |
A100 | 5.40 | 9.31 | 1.12 |
Average | 5.90 | 10.22 | 1.05 |
Table 8. Summarized results of geographical distributions of customers on cost savings
Geographical distributions of customers | Non-collaboration Nv | Collaboration Nv | $\phi$ |
I20 | 4.3 | 2.3 | 22.57 |
O20 | 4.1 | 2 | 17.90 |
A20 | 4.2 | 2.1 | 10.76 |
I40 | 8 | 6 | 31.02 |
O40 | 7.3 | 3.5 | 24.19 |
A40 | 7.5 | 3.9 | 16.35 |
I60 | 11 | 6.3 | 33.31 |
O60 | 10.1 | 4.9 | 28.22 |
A60 | 10.1 | 5.2 | 24.42 |
I100 | 17.8 | 9.8 | 41.37 |
O100 | 14.1 | 8.4 | 33.79 |
A100 | 13.8 | 8.7 | 30.96 |
Table 9. Summarized results of number of requests on the cost savings
Customer Requests | Non-collaboration Nv | Collaboration Nv | $\phi$ |
I20 | 4.3 | 2.3 | 22.57 |
I40 | 8 | 6 | 31.02 |
I60 | 11 | 6.3 | 33.31 |
I100 | 17.8 | 9.8 | 41.37 |
Average | 4.2 | 2.1 | 17.08 |
O20 | 4.1 | 2 | 17.90 |
O40 | 7.3 | 3.5 | 24.19 |
O60 | 10.1 | 4.9 | 28.22 |
O100 | 14.1 | 8.4 | 33.79 |
Average | 7.6 | 4.4 | 23.85 |
A20 | 4.2 | 2.1 | 10.76 |
A40 | 7.5 | 3.9 | 16.35 |
A60 | 10.1 | 5.2 | 24.42 |
A100 | 13.8 | 8.7 | 30.96 |
Average | 10.4 | 5.5 | 28.65 |
Table 10. Detailed results of CPLEX solver and GRASP-ILS for instances with 20 requests
Instance | CPLEX | GRASP-ILS | ||||||||||
Ini | UB | LB | CPU | GapLB | Zmin | CPU | Zavg | CPUavg | ImpCplex | GapLB | ||
I20-2-1-0 | / | 459.26 | 459.26 | 6727.61 | 0.00 | 459.26 | 6.24 | 459.26 | 7.25 | 0.00 | 0.00 | |
I20-2-1-1 | / | 366.66 | 366.66 | 142.44 | 0.00 | 366.66 | 2.23 | 366.66 | 4.47 | 0.00 | 0.00 | |
I20-2-1-2 | / | 478.19 | 478.19 | 1360.56 | 0.00 | 478.19 | 6.64 | 478.19 | 8.24 | 0.00 | 0.00 | |
I20-2-1-3 | / | 360.24 | 360.24 | 128.19 | 0.00 | 360.24 | 1.86 | 365.33 | 1.89 | 0.00 | 0.00 | |
I20-2-1-4 | / | 383.24 | 383.24 | 8933.10 | 0.00 | 383.24 | 1.67 | 383.24 | 2.01 | 0.00 | 0.00 | |
I20-2-1-5 | / | 343.70 | 343.70 | 369.21 | 0.00 | 343.70 | 1.41 | 350.76 | 1.81 | 0.00 | 0.00 | |
I20-2-1-6 | / | 344.51 | 344.51 | 366.51 | 0.00 | 344.51 | 1.59 | 344.51 | 1.77 | 0.00 | 0.00 | |
I20-2-1-7 | / | 354.59 | 354.59 | 266.03 | 0.00 | 354.59 | 1.75 | 355.59 | 3.11 | 0.00 | 0.00 | |
I20-2-1-8 | / | 351.37 | 351.37 | 2202.84 | 0.00 | 351.37 | 1.40 | 351.37 | 1.77 | 0.00 | 0.00 | |
I20-2-1-9 | / | 476.32 | 476.32 | 514.23 | 0.00 | 476.32 | 6.97 | 476.32 | 8.15 | 0.00 | 0.00 | |
Avg | 2101.07 | 0.00 | 3.17 | |||||||||
O20-2-1-0 | / | 240.46 | 240.46 | 817.75 | 0.00 | 240.46 | 2.18 | 240.46 | 2.51 | 0.00 | 0.00 | |
O20-2-1-1 | / | 260.84 | 260.84 | 727.20 | 0.00 | 260.84 | 1.84 | 260.84 | 2.13 | 0.00 | 0.00 | |
O20-2-1-2 | / | 250.62 | 250.62 | 945.73 | 0.00 | 250.62 | 2.50 | 250.62 | 2.66 | 0.00 | 0.00 | |
O20-2-1-3 | / | 254.79 | 254.79 | 1213.25 | 0.00 | 254.79 | 1.50 | 254.79 | 1.83 | 0.00 | 0.00 | |
O20-2-1-4 | / | 273.79 | 273.79 | 563.98 | 0.00 | 273.79 | 2.03 | 273.85 | 1.99 | 0.00 | 0.00 | |
O20-2-1-5 | / | 269.61 | 269.61 | 2227.00 | 0.00 | 269.61 | 1.46 | 269.61 | 2.05 | 0.00 | 0.00 | |
O20-2-1-6 | / | 260.31 | 260.31 | 1456.89 | 0.00 | 260.31 | 1.64 | 260.41 | 2.33 | 0.00 | 0.00 | |
O20-2-1-7 | / | 245.95 | 245.95 | 1323.50 | 0.00 | 245.95 | 1.69 | 246.06 | 2.32 | 0.00 | 0.00 | |
O20-2-1-8 | / | 240.28 | 240.28 | 685.00 | 0.00 | 240.28 | 1.70 | 240.28 | 2.28 | 0.00 | 0.00 | |
O20-2-1-9 | / | 229.92 | 229.92 | 813.89 | 0.00 | 229.92 | 2.70 | 229.96 | 2.41 | 0.00 | 0.00 | |
Avg | 1077.42 | 0.00 | 1.92 | 0.00 | 0.00 | |||||||
A20-2-1-0 | / | 362.31 | 362.31 | 987.80 | 0.00 | 362.31 | 1.59 | 366.24 | 1.85 | 0.00 | 0.00 | |
A20-2-1-1 | / | 444.80 | 444.80 | 1188.06 | 0.00 | 444.80 | 7.26 | 444.80 | 8.29 | 0.00 | 0.00 | |
A20-2-1-2 | / | 329.67 | 329.67 | 2358.72 | 0.00 | 329.67 | 1.37 | 334.31 | 1.85 | 0.00 | 0.00 | |
A20-2-1-3 | / | 363.62 | 363.62 | 1206.36 | 0.00 | 363.62 | 4.06 | 372.23 | 5.38 | 0.00 | 0.00 | |
A20-2-1-4 | / | 343.77 | 343.77 | 2440.98 | 0.00 | 343.77 | 1.66 | 343.77 | 1.91 | 0.00 | 0.00 | |
A20-2-1-5 | / | 287.74 | 287.74 | 1266.59 | 0.00 | 287.74 | 1.99 | 294.17 | 1.55 | 0.00 | 0.00 | |
A20-2-1-6 | / | 338.23 | 338.23 | 821.69 | 0.00 | 338.23 | 1.56 | 338.23 | 1.70 | 0.00 | 0.00 | |
A20-2-1-7 | / | 290.21 | 290.21 | 985.11 | 0.00 | 290.21 | 1.40 | 292.05 | 1.59 | 0.00 | 0.00 | |
A20-2-1-8 | / | 314.20 | 314.20 | 1324.84 | 0.00 | 314.20 | 2.13 | 314.20 | 1.70 | 0.00 | 0.00 | |
A20-2-1-9 | / | 323.60 | 323.60 | 921.38 | 0.00 | 323.60 | 1.93 | 323.60 | 2.18 | 0.00 | 0.00 | |
Avg | 1350.15 | 0.00 | 2.49 | 0.00 | 0.00 |
Table 11. Detailed results of CPLEX solver and GRASP-ILS for instances with 40 requests
Instance | CPLEX | GRASP-ILS | ||||||||||||
Ini | UB | LB | CPU | ImpIni | GapLB | Zmin | CPU | Zavg | CPUavg | ImpIni | ImpCplex | GapLB | ||
I40-2-1-0 | 764.73 | 733.02 | 554.38 | 21600.00 | 4.15 | 24.37 | 706.64 | 31.77 | 722.04 | 35.64 | 7.60 | 3.60 | 21.55 | |
I40-2-1-1 | 617.81 | 617.81 | 432.47 | 21600.00 | 0.00 | 30.00 | 600.90 | 30.07 | 607.03 | 33.09 | 2.74 | 2.74 | 28.03 | |
I40-2-1-2 | 776.04 | 776.04 | 526.08 | 21600.00 | 0.00 | 32.21 | 729.24 | 31.07 | 729.24 | 33.12 | 6.03 | 6.03 | 27.86 | |
I40-2-1-3 | 718.16 | 702.54 | 545.94 | 21600.00 | 2.18 | 22.29 | 651.55 | 26.00 | 651.55 | 28.16 | 9.28 | 7.26 | 16.21 | |
I40-2-1-4 | 720.41 | 716.43 | 519.91 | 21600.00 | 0.55 | 27.43 | 699.59 | 26.37 | 699.59 | 27.97 | 2.89 | 2.35 | 25.68 | |
I40-2-1-5 | 748.66 | 748.66 | 475.02 | 21600.00 | 0.00 | 36.55 | 647.36 | 27.67 | 647.36 | 31.16 | 13.53 | 13.53 | 26.62 | |
I40-2-1-6 | 615.92 | 615.92 | 435.58 | 21600.00 | 0.00 | 29.28 | 590.24 | 29.90 | 591.42 | 32.15 | 4.17 | 4.17 | 26.20 | |
I40-2-1-7 | 664.83 | 662.64 | 432.11 | 21600.00 | 0.33 | 34.79 | 612.68 | 28.53 | 613.44 | 29.29 | 7.84 | 7.54 | 29.47 | |
I40-2-1-8 | 634.10 | 594.85 | 447.33 | 21600.00 | 6.19 | 24.80 | 573.59 | 32.61 | 574.75 | 34.14 | 9.54 | 3.57 | 22.01 | |
I40-2-1-9 | 611.25 | 604.84 | 466.03 | 21600.00 | 1.05 | 22.95 | 598.44 | 28.16 | 601.82 | 31.40 | 2.10 | 1.06 | 22.13 | |
Avg | 21600.00 | 1.44 | 28.47 | 29.22 | 31.61 | 6.57 | 5.18 | 24.58 | ||||||
O40-2-1-0 | 590.88 | 494.73 | 486.52 | 21600.00 | 16.27 | 1.66 | 494.73 | 30.31 | 497.25 | 32.04 | 16.27 | 0.00 | 1.66 | |
O40-2-1-1 | 484.61 | 443.19 | 390.45 | 21600.00 | 9.99 | 11.90 | 434.04 | 36.80 | 439.23 | 35.30 | 10.44 | 2.06 | 10.04 | |
O40-2-1-2 | 452.71 | 445.80 | 401.58 | 21600.00 | 1.53 | 9.92 | 445.80 | 34.44 | 445.80 | 36.68 | 1.53 | 0.00 | 9.92 | |
O40-2-1-3 | 604.15 | 529.67 | 456.10 | 21600.00 | 12.33 | 13.89 | 523.35 | 36.44 | 523.35 | 37.24 | 13.37 | 1.19 | 12.85 | |
O40-2-1-4 | 551.18 | 550.47 | 458.60 | 21600.00 | 0.13 | 16.69 | 549.35 | 37.96 | 549.35 | 41.00 | 0.33 | 0.20 | 16.52 | |
O40-2-1-5 | 627.43 | 576.14 | 486.90 | 21600.00 | 8.17 | 15.49 | 573.11 | 34.70 | 573.11 | 36.25 | 8.66 | 0.53 | 15.04 | |
O40-2-1-6 | 496.89 | 492.06 | 422.04 | 21600.00 | 0.97 | 14.23 | 489.14 | 39.24 | 489.14 | 41.56 | 1.56 | 0.59 | 13.72 | |
O40-2-1-7 | 545.21 | 532.03 | 492.50 | 21600.00 | 2.78 | 7.43 | 528.80 | 31.72 | 542.87 | 36.13 | 3.01 | 0.61 | 6.86 | |
O40-2-1-8 | 441.62 | 427.55 | 427.55 | 21600.00 | 3.19 | 0.00 | 427.55 | 32.20 | 427.82 | 40.79 | 3.19 | 0.00 | 0.00 | |
O40-2-1-9 | 611.65 | 582.21 | 485.50 | 21600.00 | 4.81 | 16.61 | 578.85 | 37.98 | 579.14 | 37.03 | 5.36 | 0.58 | 16.13 | |
Avg | 21600.00 | 6.02 | 10.78 | 35.18 | 37.40 | 6.37 | 0.58 | 10.27 | ||||||
A40-2-1-0 | 595.16 | 581.93 | 463.33 | 21600.00 | 2.22 | 20.38 | 550.20 | 26.67 | 563.08 | 29.48 | 7.55 | 5.45 | 15.79 | |
A40-2-1-1 | 617.54 | 617.54 | 428.57 | 21600.00 | 0.00 | 30.60 | 597.17 | 29.64 | 601.48 | 32.31 | 3.30 | 3.30 | 28.23 | |
A40-2-1-2 | 685.71 | 593.58 | 508.05 | 21600.00 | 13.44 | 14.41 | 582.03 | 32.10 | 582.03 | 36.22 | 15.12 | 1.95 | 12.71 | |
A40-2-1-3 | 511.22 | 511.22 | 383.62 | 21600.00 | 0.00 | 24.96 | 505.21 | 31.86 | 505.21 | 34.47 | 1.18 | 1.18 | 24.07 | |
A40-2-1-4 | 574.55 | 569.49 | 460.72 | 21600.00 | 0.88 | 19.10 | 567.77 | 33.23 | 568.40 | 33.13 | 1.18 | 0.30 | 18.85 | |
A40-2-1-5 | 626.75 | 626.75 | 484.73 | 21600.00 | 0.00 | 22.66 | 617.34 | 28.18 | 617.38 | 30.09 | 1.50 | 1.50 | 21.48 | |
A40-2-1-6 | 574.52 | 572.59 | 457.56 | 21600.00 | 1.90 | 20.09 | 537.91 | 32.50 | 560.92 | 37.04 | 6.37 | 6.06 | 14.94 | |
A40-2-1-7 | 615.58 | 552.47 | 494.52 | 21600.00 | 10.90 | 10.49 | 542.06 | 30.23 | 548.20 | 28.19 | 11.94 | 1.88 | 8.77 | |
A40-2-1-8 | 642.09 | 630.61 | 480.02 | 21600.00 | 1.79 | 23.88 | 600.61 | 27.93 | 600.61 | 29.57 | 6.46 | 4.76 | 20.08 | |
A40-2-1-9 | 714.16 | 698.33 | 542.39 | 21600.00 | 2.22 | 22.33 | 632.33 | 27.06 | 635.86 | 30.86 | 11.46 | 9.45 | 14.22 | |
Avg | 21600.00 | 3.33 | 20.89 | 29.94 | 32.14 | 6.61 | 3.58 | 17.91 |
Table 12. Detailed results of CPLEX solver and GRASP-ILS for instances with 60 requests
Instance | CPLEX | GRASP-ILS | ||||||||||||
Ini | UB | LB | CPU | ImpIni | GapLB | Zmin | CPU | Zavg | CPUavg | ImpIni | ImpCplex | GapLB | ||
I60-2-1-0 | 1075.15 | 1011.77 | 647.03 | 21600.00 | 5.89 | 36.05 | 911.77 | 99.40 | 914.95 | 114.83 | 15.20 | 9.88 | 29.04 | |
I60-2-1-1 | 1190.63 | 1187.76 | 774.42 | 21600.00 | 0.24 | 34.80 | 987.76 | 118.70 | 988.14 | 130.24 | 17.04 | 16.84 | 21.60 | |
I60-2-1-2 | 950.96 | 939.23 | 602.05 | 21600.00 | 1.23 | 35.90 | 877.23 | 131.62 | 879.37 | 139.26 | 7.75 | 6.60 | 31.37 | |
I60-2-1-3 | 1088.70 | 1082.44 | 690.16 | 21600.00 | 0.57 | 36.24 | 882.44 | 137.82 | 889.93 | 122.66 | 18.95 | 18.48 | 21.79 | |
I60-2-1-4 | 1047.69 | 1000.73 | 685.00 | 21600.00 | 4.48 | 31.55 | 896.87 | 108.94 | 900.72 | 119.33 | 14.40 | 10.38 | 23.62 | |
I60-2-1-5 | 1026.03 | 1026.03 | 632.75 | 21600.00 | 0.00 | 38.33 | 996.95 | 138.59 | 997.19 | 135.02 | 2.83 | 2.83 | 36.53 | |
I60-2-1-6 | 1214.28 | 1143.88 | 758.39 | 21600.00 | 5.80 | 33.70 | 1043.88 | 119.96 | 1046.20 | 126.73 | 14.03 | 8.74 | 27.35 | |
I60-2-1-7 | 993.02 | 993.02 | 642.58 | 21600.00 | 0.00 | 35.29 | 944.32 | 132.32 | 960.94 | 137.32 | 4.90 | 4.90 | 31.95 | |
I60-2-1-8 | 946.14 | 918.94 | 625.61 | 21600.00 | 2.87 | 31.92 | 818.94 | 132.87 | 826.45 | 119.74 | 13.44 | 10.88 | 23.61 | |
I60-2-1-9 | 1029.63 | 965.24 | 687.93 | 21600.00 | 6.25 | 28.73 | 865.24 | 133.94 | 867.75 | 135.43 | 15.97 | 10.36 | 20.49 | |
Avg | 21600.00 | 2.74 | 34.25 | 125.42 | 12.45 | 9.99 | 26.73 | |||||||
O60-2-1-0 | 778.81 | 742.35 | 556.24 | 21600.00 | 4.68 | 25.07 | 652.35 | 146.37 | 672.06 | 140.72 | 16.24 | 12.12 | 14.73 | |
O60-2-1-1 | 860.37 | 792.55 | 585.30 | 21600.00 | 7.88 | 26.15 | 746.22 | 144.23 | 750.48 | 150.35 | 13.27 | 5.85 | 21.56 | |
O60-2-1-2 | 883.39 | 832.49 | 606.55 | 21600.00 | 5.76 | 27.14 | 732.49 | 138.82 | 736.08 | 137.72 | 17.08 | 12.01 | 17.19 | |
O60-2-1-3 | 975.67 | 897.76 | 686.25 | 21600.00 | 7.99 | 23.56 | 787.76 | 128.96 | 795.54 | 144.19 | 19.26 | 12.25 | 12.89 | |
O60-2-1-4 | 889.25 | 832.01 | 565.60 | 21600.00 | 6.44 | 32.02 | 727.32 | 159.57 | 734.02 | 163.88 | 18.21 | 12.58 | 22.24 | |
O60-2-1-5 | 891.08 | 852.47 | 631.60 | 21600.00 | 4.33 | 25.91 | 752.74 | 150.60 | 755.68 | 145.87 | 15.53 | 11.70 | 16.09 | |
O60-2-1-6 | 813.00 | 813.00 | 542.76 | 21600.00 | 0.00 | 33.24 | 680.46 | 129.71 | 680.46 | 147.45 | 16.30 | 16.30 | 20.24 | |
O60-2-1-7 | 935.69 | 881.76 | 640.60 | 21600.00 | 5.76 | 27.35 | 752.96 | 162.61 | 761.11 | 172.49 | 19.53 | 14.61 | 14.92 | |
O60-2-1-8 | 850.19 | 835.58 | 571.37 | 21600.00 | 1.72 | 31.62 | 695.58 | 134.58 | 696.81 | 139.18 | 18.19 | 16.75 | 17.86 | |
O60-2-1-9 | 850.23 | 823.61 | 562.61 | 21600.00 | 3.13 | 31.69 | 723.61 | 152.90 | 727.63 | 150.04 | 14.89 | 12.14 | 22.25 | |
Avg | 21600.00 | 4.77 | 28.38 | 144.84 | 16.85 | 12.63 | 18.00 | |||||||
A60-2-1-0 | 936.24 | 936.24 | 594.70 | 21600.00 | 0.00 | 36.48 | 836.54 | 161.45 | 836.60 | 163.57 | 10.65 | 10.65 | 28.91 | |
A60-2-1-1 | 1072.31 | 1072.31 | 663.76 | 21600.00 | 0.00 | 38.1 | 911.33 | 161.93 | 941.39 | 158.79 | 15.01 | 15.01 | 27.17 | |
A60-2-1-2 | 859.84 | 803.79 | 620.37 | 21600.00 | 6.52 | 22.82 | 703.79 | 135.40 | 703.85 | 151.11 | 18.15 | 12.44 | 11.85 | |
A60-2-1-3 | 950.17 | 881.73 | 663.68 | 21600.00 | 7.20 | 24.73 | 781.73 | 122.15 | 782.94 | 123.85 | 17.73 | 11.34 | 15.10 | |
A60-2-1-4 | 912.08 | 902.08 | 622.80 | 21600.00 | 1.10 | 30.96 | 793.69 | 148.34 | 806.85 | 147.38 | 12.98 | 12.02 | 21.53 | |
A60-2-1-5 | 908.24 | 908.24 | 611.25 | 21600.00 | 0.00 | 32.7 | 740.28 | 148.01 | 741.38 | 148.81 | 18.49 | 18.49 | 17.43 | |
A60-2-1-6 | 919.06 | 854.71 | 676.50 | 21600.00 | 7.00 | 20.85 | 754.71 | 146.15 | 756.53 | 157.06 | 17.88 | 11.70 | 10.36 | |
A60-2-1-7 | 942.98 | 880.28 | 647.62 | 21600.00 | 6.65 | 26.43 | 780.28 | 155.59 | 796.40 | 155.86 | 17.25 | 11.36 | 17.00 | |
A60-2-1-8 | 799.61 | 799.61 | 594.75 | 21600.00 | 0.00 | 25.62 | 751.38 | 140.81 | 757.58 | 142.27 | 6.03 | 6.03 | 20.85 | |
A60-2-1-9 | 817.71 | 776.45 | 553.61 | 21600.00 | 5.05 | 28.7 | 705.99 | 163.67 | 712.95 | 157.17 | 13.66 | 9.07 | 21.58 | |
Avg | 21600.00 | 3.35 | 28.74 | 148.35 | 14.78 | 11.81 | 19.18 |
Table 13. Detailed results of CPLEX solver and GRASP-ILS for instances with 100 requests
Instance | CPLEX | GRASP-ILS | ||||||||||||
Ini | UB | LB | CPU | ImpIni | GapLB | Zmin | CPU | Zavg | CPUavg | ImpIni | ImpCplex | GapLB | ||
I100-2-1-0 | 1735.62 | 1680.34 | 1041.47 | 21600.00 | 3.29 | 38.02 | 1500.16 | 242.56 | 1509.42 | 254.82 | 15.70 | 10.72 | 30.58 | |
I100-2-1-1 | 1651.57 | 1634.89 | 1015.27 | 21600.00 | 1.02 | 37.90 | 1399.61 | 244.23 | 1409.80 | 271.59 | 18.00 | 14.39 | 27.46 | |
I100-2-1-2 | 1668.99 | 1668.99 | 907.93 | 21600.00 | 0.00 | 45.60 | 1481.37 | 264.12 | 1491.31 | 270.40 | 12.67 | 11.24 | 38.71 | |
I100-2-1-3 | 1764.60 | 1689.42 | 1077.17 | 21600.00 | 4.45 | 36.24 | 1406.15 | 200.51 | 1412.52 | 228.29 | 25.49 | 16.77 | 23.40 | |
I100-2-1-4 | 1686.00 | 1686.00 | 985.47 | 21600.00 | 0.00 | 41.55 | 1471.77 | 231.05 | 1479.38 | 237.84 | 14.56 | 12.71 | 33.04 | |
I100-2-1-5 | 1700.66 | 1700.66 | 878.73 | 21600.00 | 0.00 | 48.33 | 1465.71 | 265.97 | 1488.23 | 273.44 | 16.03 | 13.82 | 40.05 | |
I100-2-1-6 | 1692.38 | 1691.53 | 1017.12 | 21600.00 | 0.05 | 39.87 | 1482.92 | 258.92 | 1503.80 | 271.70 | 14.12 | 12.33 | 31.41 | |
I100-2-1-7 | 1645.66 | 1645.66 | 900.34 | 21600.00 | 0.00 | 45.29 | 1439.77 | 227.63 | 1442.38 | 242.32 | 14.30 | 12.51 | 37.47 | |
I100-2-1-8 | 1505.41 | 1478.50 | 927.61 | 21600.00 | 1.82 | 37.26 | 1277.58 | 261.05 | 1283.99 | 274.56 | 17.83 | 13.59 | 27.39 | |
I100-2-1-9 | 1541.52 | 1460.33 | 987.62 | 21600.00 | 5.56 | 32.37 | 1286.29 | 267.15 | 1315.68 | 277.42 | 19.84 | 11.92 | 23.22 | |
Avg | 21600.00 | 1.62 | 40.24 | 246.32 | 16.85 | 13.00 | 31.27 | |||||||
O100-2-1-0 | 1467.93 | 1420.49 | 950.02 | 21600.00 | 3.34 | 33.12 | 1215.92 | 278.27 | 1225.50 | 288.86 | 20.73 | 14.40 | 21.87 | |
O100-2-1-1 | 1309.79 | 1309.79 | 836.30 | 21600.00 | 0.00 | 36.15 | 1113.13 | 316.97 | 1124.36 | 328.01 | 17.67 | 15.01 | 24.87 | |
O100-2-1-2 | 1283.48 | 1230.45 | 831.54 | 21600.00 | 4.31 | 32.42 | 1066.12 | 254.79 | 1068.68 | 263.26 | 20.39 | 13.36 | 22.00 | |
O100-2-1-3 | 1284.46 | 1321.90 | 810.99 | 21600.00 | 0.00 | 38.65 | 1166.47 | 300.23 | 1186.02 | 278.56 | 13.32 | 11.76 | 30.48 | |
O100-2-1-4 | 1382.26 | 1338.36 | 909.82 | 21600.00 | 3.28 | 32.02 | 1146.62 | 287.89 | 1151.50 | 298.72 | 20.55 | 14.33 | 20.65 | |
O100-2-1-5 | 1494.38 | 1431.12 | 903.18 | 21600.00 | 4.42 | 36.89 | 1223.53 | 294.71 | 1245.41 | 298.48 | 22.14 | 14.51 | 26.18 | |
O100-2-1-6 | 1318.96 | 1264.83 | 831.75 | 21600.00 | 4.28 | 34.24 | 1062.43 | 311.91 | 1064.81 | 321.69 | 24.15 | 16.00 | 21.71 | |
O100-2-1-7 | 1435.95 | 1432.51 | 894.75 | 21600.00 | 0.24 | 37.54 | 1224.31 | 306.67 | 1230.86 | 324.67 | 17.29 | 14.53 | 26.92 | |
O100-2-1-8 | 1254.70 | 1221.48 | 779.18 | 21600.00 | 2.72 | 36.21 | 971.56 | 296.99 | 1002.10 | 317.68 | 29.14 | 20.46 | 19.80 | |
O100-2-1-9 | 1381.18 | 1339.26 | 866.90 | 21600.00 | 3.13 | 35.27 | 1098.25 | 278.80 | 1119.88 | 283.29 | 25.76 | 18.00 | 21.06 | |
Avg | 21600.00 | 2.57 | 35.25 | 292.72 | 21.11 | 15.24 | 23.55 | |||||||
A100-2-1-0 | 1415.28 | 1404.33 | 863.94 | 21600.00 | 0.78 | 38.48 | 1212.68 | 235.67 | 1230.21 | 256.89 | 16.71 | 13.65 | 28.76 | |
A100-2-1-1 | 1696.07 | 1627.24 | 1168.36 | 21600.00 | 4.23 | 28.20 | 1271.73 | 269.87 | 1291.68 | 279.07 | 33.37 | 21.85 | 8.13 | |
A100-2-1-2 | 1328.88 | 1283.69 | 849.55 | 21600.00 | 3.52 | 33.82 | 1129.63 | 308.04 | 1132.34 | 325.42 | 17.64 | 12.00 | 24.79 | |
A100-2-1-3 | 1364.97 | 1360.34 | 865.59 | 21600.00 | 0.34 | 36.37 | 1162.85 | 263.527 | 1179.11 | 269.85 | 17.38 | 14.52 | 25.56 | |
A100-2-1-4 | 1433.15 | 1417.56 | 886.68 | 21600.00 | 1.10 | 37.45 | 1190.23 | 270.33 | 1197.46 | 281.37 | 20.41 | 16.04 | 25.50 | |
A100-2-1-5 | 1320.79 | 1320.79 | 802.64 | 21600.00 | 0.00 | 39.23 | 1093.48 | 267.46 | 1116.72 | 344.65 | 20.79 | 17.21 | 26.60 | |
A100-2-1-6 | 1450.78 | 1400.91 | 972.51 | 21600.00 | 3.56 | 30.58 | 1208.76 | 258.22 | 1212.17 | 356.84 | 20.02 | 13.72 | 19.54 | |
A100-2-1-7 | 1404.69 | 1371.23 | 920.23 | 21600.00 | 2.44 | 32.89 | 1174.24 | 364.28 | 1193.54 | 380.21 | 19.63 | 14.37 | 21.63 | |
A100-2-1-8 | 1334.8 | 1321.19 | 847.28 | 21600.00 | 1.03 | 35.87 | 1154.51 | 266.66 | 1177.15 | 345.79 | 15.62 | 12.62 | 26.61 | |
A100-2-1-9 | 1382.94 | 1365.60 | 918.36 | 21600.00 | 1.27 | 32.75 | 1217.18 | 320.42 | 1218.88 | 329.73 | 13.62 | 10.87 | 24.55 | |
Avg | 21600.00 | 1.83 | 34.56 | 282.45 | 19.52 | 14.68 | 23.17 |
Table 14. Meta-heuristics results for instances with 20 requests
Instance | GRASP | ILS | GRASP-ILS | ||||||
Zmin | Zavg | Zmin | Zavg | Zmin | ImpGRASP-ILS, GRASP | ImpGRASP-ILS, ILS | |||
I20-2-1-0 | 459.26 | 459.26 | 459.26 | 459.26 | 459.26 | 0.00 | 0.00 | ||
I20-2-1-1 | 449.88 | 449.88 | 366.66 | 366.66 | 366.66 | 22.70 | 0.00 | ||
I20-2-1-2 | 478.19 | 478.19 | 478.19 | 478.19 | 478.19 | 0.00 | 0.00 | ||
I20-2-1-3 | 449.29 | 459.44 | 360.24 | 415.28 | 360.24 | 24.72 | 0.00 | ||
I20-2-1-4 | 387.33 | 413.78 | 387.33 | 412.08 | 383.24 | 1.07 | 1.07 | ||
I20-2-1-5 | 364.89 | 370.22 | 364.89 | 373.59 | 343.70 | 6.17 | 6.17 | ||
I20-2-1-6 | 344.51 | 344.51 | 344.51 | 344.51 | 344.51 | 0.00 | 0.00 | ||
I20-2-1-7 | 379.50 | 407.70 | 426.47 | 479.74 | 354.59 | 7.03 | 20.27 | ||
I20-2-1-8 | 363.34 | 368.28 | 366.19 | 376.44 | 351.37 | 3.41 | 4.22 | ||
I20-2-1-9 | 476.32 | 476.32 | 476.32 | 494.04 | 476.32 | 0.00 | 0.00 | ||
Avg | 6.51 | 3.17 | |||||||
O20-2-1-0 | 240.46 | 240.46 | 240.46 | 240.46 | 240.46 | 0.00 | 0.00 | ||
O20-2-1-1 | 261.02 | 261.02 | 278.50 | 278.56 | 260.84 | 0.07 | 6.77 | ||
O20-2-1-2 | 250.62 | 250.62 | 251.75 | 251.75 | 250.62 | 0.00 | 0.45 | ||
O20-2-1-3 | 254.79 | 254.79 | 254.79 | 254.79 | 254.79 | 0.00 | 0.00 | ||
O20-2-1-4 | 273.98 | 274.99 | 275.45 | 275.56 | 273.79 | 0.07 | 0.61 | ||
O20-2-1-5 | 269.61 | 269.61 | 269.61 | 269.61 | 269.61 | 0.00 | 0.00 | ||
O20-2-1-6 | 260.87 | 260.92 | 260.87 | 261.21 | 260.31 | 0.22 | 0.22 | ||
O20-2-1-7 | 245.95 | 246.37 | 246.97 | 246.97 | 245.95 | 0.00 | 0.41 | ||
O20-2-1-8 | 265.74 | 265.74 | 240.28 | 244.44 | 240.28 | 10.60 | 0.00 | ||
O20-2-1-9 | 247.82 | 247.97 | 230.15 | 235.51 | 229.92 | 7.79 | 0.10 | ||
Avg | 1.87 | 0.86 | |||||||
A20-2-1-0 | 367.97 | 367.97 | 367.91 | 379.79 | 362.31 | 1.56 | 1.55 | ||
A20-2-1-1 | 444.8 | 444.80 | 444.80 | 444.80 | 444.80 | 0.00 | 0.00 | ||
A20-2-1-2 | 364.77 | 375.31 | 364.77 | 404.68 | 329.67 | 10.65 | 10.65 | ||
A20-2-1-3 | 412.44 | 439.21 | 423.93 | 456.66 | 363.62 | 13.43 | 16.59 | ||
A20-2-1-4 | 415.4 | 415.40 | 343.77 | 397.64 | 343.77 | 20.84 | 0.00 | ||
A20-2-1-5 | 295.37 | 297.82 | 299.91 | 305.22 | 287.74 | 2.65 | 4.23 | ||
A20-2-1-6 | 340.74 | 340.74 | 338.23 | 338.74 | 338.23 | 0.74 | 0.00 | ||
A20-2-1-7 | 298.51 | 304.03 | 301.26 | 304.94 | 290.21 | 2.86 | 3.81 | ||
A20-2-1-8 | 314.20 | 314.20 | 314.20 | 314.20 | 314.20 | 0.00 | 0.00 | ||
A20-2-1-9 | 400.40 | 400.40 | 323.60 | 361.33 | 323.60 | 23.73 | 0.00 | ||
Avg | 7.65 | 3.68 |
Table 15. Meta-heuristics results for instances with 40 requests
Instance | GRASP | ILS | GRASP-ILS | ||||||
Zmin | Zavg | Zmin | Zavg | Zmin | ImpGRASP-ILS, GRASP | ImpGRASP-ILS, ILS | |||
I40-2-1-0 | 733.03 | 769.61 | 741.58 | 773.84 | 706.64 | 3.73 | 4.94 | ||
I40-2-1-1 | 617.81 | 617.81 | 610.54 | 675.38 | 600.90 | 2.81 | 1.60 | ||
I40-2-1-2 | 756.99 | 806.65 | 755.90 | 772.53 | 729.24 | 3.81 | 3.66 | ||
I40-2-1-3 | 651.55 | 681.20 | 718.16 | 718.16 | 651.55 | 0.00 | 10.22 | ||
I40-2-1-4 | 699.59 | 731.00 | 720.42 | 720.42 | 699.59 | 0.00 | 2.98 | ||
I40-2-1-5 | 718.38 | 761.48 | 672.90 | 771.28 | 647.36 | 10.97 | 3.95 | ||
I40-2-1-6 | 605.91 | 639.66 | 627.27 | 700.22 | 590.24 | 4.35 | 6.27 | ||
I40-2-1-7 | 653.35 | 653.35 | 612.68 | 686.02 | 612.68 | 6.64 | 0.00 | ||
I40-2-1-8 | 601.37 | 635.83 | 582.26 | 645.55 | 573.59 | 4.84 | 1.51 | ||
I40-2-1-9 | 612.71 | 654.01 | 610.28 | 677.78 | 598.44 | 2.38 | 1.98 | ||
Avg | 3.95 | 3.71 | |||||||
O40-2-1-0 | 573.13 | 607.63 | 530.77 | 613.94 | 494.73 | 15.85 | 7.28 | ||
O40-2-1-1 | 451.96 | 479.67 | 476.94 | 535.79 | 434.04 | 4.13 | 9.88 | ||
O40-2-1-2 | 465.61 | 486.61 | 452.72 | 499.94 | 445.80 | 4.44 | 1.55 | ||
O40-2-1-3 | 523.35 | 523.35 | 523.35 | 523.35 | 523.35 | 0.00 | 0.00 | ||
O40-2-1-4 | 549.35 | 549.35 | 549.35 | 549.35 | 549.35 | 0.00 | 0.00 | ||
O40-2-1-5 | 577.85 | 601.43 | 603.35 | 666.88 | 573.11 | 0.83 | 5.28 | ||
O40-2-1-6 | 492.06 | 525.27 | 492.06 | 492.06 | 489.14 | 0.60 | 0.60 | ||
O40-2-1-7 | 545.21 | 550.93 | 545.21 | 545.21 | 528.80 | 3.10 | 3.10 | ||
O40-2-1-8 | 431.92 | 455.46 | 430.07 | 473.46 | 427.55 | 1.02 | 0.59 | ||
O40-2-1-9 | 579.27 | 602.79 | 601.79 | 668.05 | 578.85 | 0.07 | 3.96 | ||
Avg | 3.00 | 3.23 | |||||||
A40-2-1-0 | 636.15 | 636.28 | 551.33 | 631.55 | 550.20 | 15.62 | 0.21 | ||
A40-2-1-1 | 606.64 | 644.56 | 616.86 | 622.47 | 597.17 | 1.59 | 3.30 | ||
A40-2-1-2 | 587.75 | 587.75 | 582.03 | 583.37 | 582.03 | 0.98 | 0.00 | ||
A40-2-1-3 | 506.85 | 506.85 | 508.34 | 559.68 | 505.21 | 0.32 | 0.62 | ||
A40-2-1-4 | 573.67 | 573.78 | 568.42 | 570.30 | 567.77 | 1.04 | 0.11 | ||
A40-2-1-5 | 683.98 | 697.73 | 617.34 | 703.95 | 617.34 | 10.79 | 0.00 | ||
A40-2-1-6 | 587.71 | 660.17 | 569.77 | 572.96 | 537.91 | 9.26 | 5.92 | ||
A40-2-1-7 | 615.47 | 645.69 | 605.92 | 703.23 | 542.06 | 13.54 | 11.78 | ||
A40-2-1-8 | 624.30 | 670.44 | 624.30 | 702.84 | 600.61 | 3.94 | 3.94 | ||
A40-2-1-9 | 697.84 | 724.57 | 697.60 | 816.89 | 632.33 | 10.36 | 10.32 | ||
Avg | 6.75 | 3.62 |
Table 16. Meta-heuristics results for instances with 60 requestss
Instance | GRASP | ILS | GRASP-ILS | ||||||
Zmin | Zavg | Zmin | Zavg | Zmin | ImpGRASP-ILS, GRASP | ImpGRASP-ILS, ILS | |||
I60-2-1-0 | 971.76 | 930.24 | 954.90 | 1040.17 | 911.77 | 6.58 | 4.73 | ||
I60-2-1-1 | 997.55 | 990.98 | 997.55 | 1070.57 | 987.76 | 0.99 | 0.99 | ||
I60-2-1-2 | 893.43 | 879.02 | 897.08 | 1033.44 | 877.23 | 1.85 | 2.26 | ||
I60-2-1-3 | 907.53 | 902.23 | 901.81 | 1008.95 | 882.44 | 2.84 | 2.20 | ||
I60-2-1-4 | 979.14 | 967.49 | 975.61 | 1121.17 | 896.87 | 9.17 | 8.78 | ||
I60-2-1-5 | 1004.53 | 997.95 | 1004.53 | 1065.50 | 996.95 | 0.76 | 0.76 | ||
I60-2-1-6 | 1061.43 | 1051.96 | 1056.81 | 1093.90 | 1043.88 | 1.68 | 1.24 | ||
I60-2-1-7 | 1005.16 | 981.49 | 950.37 | 1110.89 | 944.32 | 6.44 | 0.64 | ||
I60-2-1-8 | 882.39 | 854.26 | 854.36 | 965.17 | 818.94 | 7.75 | 4.33 | ||
I60-2-1-9 | 890.19 | 877.62 | 870.52 | 1028.26 | 865.24 | 2.88 | 0.61 | ||
Avg | 4.09 | 2.65 | |||||||
O60-2-1-0 | 713.15 | 746.03 | 703.50 | 758.65 | 652.35 | 9.32 | 3.73 | ||
O60-2-1-1 | 820.25 | 872.50 | 782.50 | 820.53 | 746.22 | 9.92 | 0.55 | ||
O60-2-1-2 | 782.26 | 799.70 | 761.74 | 868.31 | 732.49 | 6.79 | 0.15 | ||
O60-2-1-3 | 847.18 | 875.98 | 820.05 | 853.67 | 787.76 | 7.54 | 0.52 | ||
O60-2-1-4 | 776.48 | 845.20 | 771.15 | 817.65 | 727.32 | 6.76 | 0.64 | ||
O60-2-1-5 | 820.66 | 851.19 | 763.93 | 844.07 | 752.74 | 9.02 | 0.40 | ||
O60-2-1-6 | 708.48 | 714.50 | 680.46 | 680.46 | 680.46 | 4.12 | 0.00 | ||
O60-2-1-7 | 816.27 | 830.39 | 781.70 | 811.56 | 752.96 | 8.41 | 1.16 | ||
O60-2-1-8 | 723.94 | 759.78 | 715.02 | 806.47 | 695.58 | 4.08 | 0.00 | ||
O60-2-1-9 | 783.28 | 871.56 | 747.26 | 771.70 | 723.61 | 8.25 | 0.18 | ||
Avg | 7.42 | 0.73 | |||||||
A60-2-1-0 | 858.31 | 858.31 | 836.63 | 929.83 | 836.54 | 2.60 | 0.01 | ||
A60-2-1-1 | 956.96 | 1024.04 | 952.71 | 1049.60 | 911.33 | 5.01 | 4.54 | ||
A60-2-1-2 | 719.41 | 741.14 | 776.51 | 778.37 | 703.79 | 2.22 | 10.33 | ||
A60-2-1-3 | 849.45 | 928.96 | 802.22 | 912.04 | 781.73 | 8.66 | 2.62 | ||
A60-2-1-4 | 857.32 | 880.81 | 841.54 | 899.44 | 793.69 | 8.02 | 6.03 | ||
A60-2-1-5 | 808.57 | 830.08 | 761.17 | 803.11 | 740.28 | 9.22 | 2.82 | ||
A60-2-1-6 | 803.29 | 862.81 | 803.29 | 871.89 | 754.71 | 6.44 | 6.44 | ||
A60-2-1-7 | 853.23 | 853.23 | 802.72 | 905.31 | 780.28 | 9.35 | 2.88 | ||
A60-2-1-8 | 780.61 | 815.35 | 772.43 | 843.73 | 751.38 | 3.89 | 2.80 | ||
A60-2-1-9 | 763.12 | 795.25 | 762.09 | 825.88 | 705.99 | 8.09 | 7.95 | ||
Avg | 6.35 | 4.64 |
Table 17. Meta-heuristics results for instances with 100 requests
Instance | GRASP | ILS | GRASP-ILS | ||||||
Zmin | Zavg | Zmin | Zavg | Zmin | ImpGRASP-ILS, GRASP | ImpGRASP-ILS, ILS | |||
I100-2-1-0 | 1638.35 | 1704.61 | 1609.09 | 1890.61 | 1500.16 | 9.21 | 7.26 | ||
I100-2-1-1 | 1475.76 | 1550.51 | 1462.03 | 1720.88 | 1399.61 | 5.44 | 4.46 | ||
I100-2-1-2 | 1549.56 | 1714.37 | 1519.43 | 1792.65 | 1481.37 | 4.60 | 2.57 | ||
I100-2-1-3 | 1541.71 | 1630.81 | 1516.8 | 1799.58 | 1406.15 | 9.64 | 7.87 | ||
I100-2-1-4 | 1586.41 | 1607.53 | 1501.97 | 1774.75 | 1471.77 | 7.79 | 2.05 | ||
I100-2-1-5 | 1547.53 | 1591.87 | 1476.42 | 1763.20 | 1465.71 | 5.58 | 0.73 | ||
I100-2-1-6 | 1594.07 | 1622.95 | 1501.05 | 1791.06 | 1482.92 | 7.50 | 1.22 | ||
I100-2-1-7 | 1568.12 | 1653.99 | 1508.18 | 1741.59 | 1439.77 | 8.91 | 4.75 | ||
I100-2-1-8 | 1340.87 | 1424.62 | 1358.42 | 1513.15 | 1277.58 | 4.95 | 6.33 | ||
I100-2-1-9 | 1393.89 | 1430.99 | 1346.03 | 1604.42 | 1286.29 | 8.37 | 4.64 | ||
Avg | 7.20 | 4.19 | |||||||
O100-2-1-0 | 1279.18 | 1347.70 | 1252.87 | 1352.97 | 1215.92 | 5.20 | 3.04 | ||
O100-2-1-1 | 1169.86 | 1255.83 | 1149.36 | 1236.94 | 1113.13 | 5.10 | 3.25 | ||
O100-2-1-2 | 1123.63 | 1191.98 | 1098.08 | 1156.11 | 1066.12 | 5.39 | 3.00 | ||
O100-2-1-3 | 1272.18 | 1320.34 | 1209.93 | 1297.75 | 1166.47 | 9.06 | 3.73 | ||
O100-2-1-4 | 1278.7 | 1376.42 | 1206.94 | 1273.12 | 1146.62 | 11.52 | 5.26 | ||
O100-2-1-5 | 1282.2 | 1310.21 | 1264.78 | 1444.76 | 1223.53 | 4.80 | 3.37 | ||
O100-2-1-6 | 1112.92 | 1195.06 | 1099.75 | 1266.59 | 1062.43 | 4.75 | 3.51 | ||
O100-2-1-7 | 1271.97 | 1338.24 | 1231.68 | 1310.19 | 1224.31 | 3.89 | 0.60 | ||
O100-2-1-8 | 1071.1 | 1141.54 | 1000.51 | 1190.17 | 971.56 | 10.25 | 2.98 | ||
O100-2-1-9 | 1163.25 | 1211.45 | 1197.58 | 1339.77 | 1098.25 | 5.92 | 9.04 | ||
Avg | 6.59 | 3.78 | |||||||
A100-2-1-0 | 1280.19 | 1361.66 | 1265.52 | 1359.89 | 1212.68 | 5.57 | 4.36 | ||
A100-2-1-1 | 1362.77 | 1431.84 | 1362.04 | 1541.04 | 1271.73 | 7.16 | 7.10 | ||
A100-2-1-2 | 1183.91 | 1240.90 | 1159.67 | 1326.68 | 1129.63 | 4.81 | 2.66 | ||
A100-2-1-3 | 1214.65 | 1288.61 | 1198.17 | 1355.01 | 1162.85 | 2.73 | 3.04 | ||
A100-2-1-4 | 1236.76 | 1325.19 | 1243.54 | 1400.64 | 1190.23 | 3.91 | 4.48 | ||
A100-2-1-5 | 1177.71 | 1241.31 | 1144.83 | 1228.66 | 1093.48 | 7.70 | 4.70 | ||
A100-2-1-6 | 1270.56 | 1328.54 | 1256.54 | 1336.74 | 1208.76 | 5.11 | 3.95 | ||
A100-2-1-7 | 1227.98 | 1308.64 | 1221.57 | 1316.30 | 1174.24 | 4.58 | 4.03 | ||
A100-2-1-8 | 1210.54 | 1298.73 | 1192.27 | 1288.85 | 1154.51 | 3.99 | 3.27 | ||
A100-2-1-9 | 1271.11 | 1320.95 | 1253.95 | 1419.94 | 1217.18 | 4.43 | 3.02 | ||
Avg | 5.00 | 4.06 |
Table 18. Cost savings for instances with 20 requests
Instance | Non-collaboration | Collaboration | |||
Cost | NV | Cost | NV | $\phi$ | |
I20-2-1-0 | 528.74 | 5 | 459.26 | 3 | 13.14 |
I20-2-1-1 | 477.54 | 4 | 366.66 | 2 | 23.22 |
I20-2-1-2 | 612.48 | 4 | 478.19 | 3 | 21.93 |
I20-2-1-3 | 481.75 | 4 | 360.24 | 2 | 25.22 |
I20-2-1-4 | 491.83 | 4 | 383.24 | 2 | 22.08 |
I20-2-1-5 | 427.16 | 4 | 343.7 | 2 | 19.54 |
I20-2-1-6 | 453.01 | 5 | 344.51 | 2 | 23.95 |
I20-2-1-7 | 476.59 | 4 | 354.59 | 2 | 25.60 |
I20-2-1-8 | 484.62 | 4 | 351.37 | 2 | 27.50 |
I20-2-1-9 | 622.55 | 5 | 476.32 | 3 | 23.49 |
Avg | 4.3 | 2.3 | 22.57 | ||
O20-2-1-0 | 283.63 | 4 | 240.46 | 2 | 15.22 |
O20-2-1-1 | 299.27 | 4 | 260.84 | 2 | 12.84 |
O20-2-1-2 | 336.31 | 4 | 250.62 | 2 | 25.48 |
O20-2-1-3 | 316.26 | 4 | 254.79 | 2 | 19.44 |
O20-2-1-4 | 329.42 | 5 | 273.79 | 2 | 16.89 |
O20-2-1-5 | 323.26 | 4 | 269.61 | 2 | 16.60 |
O20-2-1-6 | 293.28 | 4 | 260.31 | 2 | 11.24 |
O20-2-1-7 | 348.76 | 4 | 245.95 | 2 | 29.48 |
O20-2-1-8 | 296.46 | 4 | 240.28 | 2 | 18.95 |
O20-2-1-9 | 263.93 | 4 | 229.92 | 2 | 12.89 |
Avg | 4.1 | 2 | 17.90 | ||
A20-2-1-0 | 403.54 | 4 | 362.31 | 2 | 10.22 |
A20-2-1-1 | 494.62 | 4 | 444.8 | 3 | 10.07 |
A20-2-1-2 | 383.46 | 5 | 329.67 | 2 | 14.03 |
A20-2-1-3 | 410.31 | 5 | 363.62 | 2 | 11.38 |
A20-2-1-4 | 386.48 | 4 | 343.77 | 2 | 11.05 |
A20-2-1-5 | 302.36 | 4 | 287.74 | 2 | 4.83 |
A20-2-1-6 | 371.57 | 4 | 338.23 | 2 | 8.97 |
A20-2-1-7 | 333.01 | 4 | 290.21 | 2 | 12.85 |
A20-2-1-8 | 358.15 | 4 | 314.2 | 2 | 12.27 |
A20-2-1-9 | 367.36 | 4 | 323.6 | 2 | 11.91 |
Avg | 4.2 | 10.76 |
Table 19. Cost savings for instances with 40 requests
Instance | Non- collaboration | Collaboration | |||
Cost | NV | Cost | NV | $\phi$ | |
I40-2-1-0 | 1021.39 | 8 | 706.64 | 6 | 30.82 |
I40-2-1-1 | 861.87 | 8 | 600.90 | 6 | 30.28 |
I40-2-1-2 | 1006.32 | 8 | 729.24 | 6 | 27.53 |
I40-2-1-3 | 943.17 | 8 | 651.55 | 6 | 30.92 |
I40-2-1-4 | 1062.08 | 8 | 699.59 | 6 | 34.13 |
I40-2-1-5 | 930.23 | 8 | 647.36 | 6 | 30.41 |
I40-2-1-6 | 874.73 | 8 | 590.24 | 6 | 32.52 |
I40-2-1-7 | 910.38 | 8 | 612.68 | 6 | 32.70 |
I40-2-1-8 | 841.23 | 8 | 573.59 | 6 | 31.82 |
I40-2-1-9 | 843.80 | 8 | 598.44 | 6 | 29.08 |
Avg | 8 | 6 | 31.02 | ||
O40-2-1-0 | 650.32 | 7 | 494.73 | 3 | 23.93 |
O40-2-1-1 | 574.51 | 7 | 434.04 | 3 | 24.45 |
O40-2-1-2 | 578.02 | 7 | 445.80 | 3 | 22.87 |
O40-2-1-3 | 692.40 | 8 | 523.35 | 4 | 24.42 |
O40-2-1-4 | 749.51 | 7 | 549.35 | 4 | 26.71 |
O40-2-1-5 | 750.72 | 8 | 573.11 | 4 | 23.66 |
O40-2-1-6 | 636.65 | 7 | 492.06 | 4 | 22.71 |
O40-2-1-7 | 734.12 | 7 | 528.80 | 3 | 27.97 |
O40-2-1-8 | 553.40 | 7 | 427.55 | 3 | 22.74 |
O40-2-1-9 | 746.28 | 8 | 578.85 | 4 | 22.43 |
Avg | 7.3 | 3.5 | 24.19 | ||
A40-2-1-0 | 686.52 | 8 | 550.2 | 4 | 19.86 |
A40-2-1-1 | 730.78 | 7 | 597.17 | 4 | 18.28 |
A40-2-1-2 | 708.31 | 8 | 582.03 | 4 | 17.83 |
A40-2-1-3 | 662.45 | 8 | 505.21 | 4 | 23.74 |
A40-2-1-4 | 667.54 | 8 | 567.77 | 4 | 14.95 |
A40-2-1-5 | 714.79 | 7 | 617.34 | 4 | 13.63 |
A40-2-1-6 | 610.43 | 7 | 537.91 | 3 | 11.88 |
A40-2-1-7 | 639.30 | 7 | 542.06 | 4 | 15.21 |
A40-2-1-8 | 695.09 | 7 | 600.61 | 4 | 13.59 |
A40-2-1-9 | 739.69 | 8 | 632.33 | 4 | 14.51 |
Avg | 7.5 | 3.9 | 16.35 |
Table 20. Cost savings for instances with 60 requests
Instance | Non- collaboration | Collaboration | |||
Cost | NV | Cost | NV | $\phi$ | |
I60-2-1-0 | 1405.67 | 11 | 911.77 | 6 | 35.14 |
I60-2-1-1 | 1466.10 | 10 | 987.76 | 7 | 32.63 |
I60-2-1-2 | 1326.57 | 12 | 877.23 | 6 | 33.87 |
I60-2-1-3 | 1381.98 | 12 | 882.44 | 6 | 36.15 |
I60-2-1-4 | 1341.28 | 11 | 896.87 | 5 | 33.13 |
I60-2-1-5 | 1438.62 | 11 | 996.95 | 7 | 30.70 |
I60-2-1-6 | 1575.24 | 13 | 1043.88 | 7 | 33.73 |
I60-2-1-7 | 1384.43 | 10 | 944.32 | 6 | 31.79 |
I60-2-1-8 | 1245.97 | 10 | 818.94 | 5 | 34.27 |
I60-2-1-9 | 1266.52 | 10 | 865.24 | 8 | 31.68 |
Avg | 11 | 6.3 | 33.31 | ||
O60-2-1-0 | 920.63 | 8 | 652.35 | 5 | 29.14 |
O60-2-1-1 | 1049.04 | 11 | 742.55 | 4 | 29.22 |
O60-2-1-2 | 1092.15 | 11 | 732.49 | 5 | 32.93 |
O60-2-1-3 | 1083.86 | 11 | 787.76 | 5 | 27.32 |
O60-2-1-4 | 1031.74 | 11 | 727.32 | 5 | 29.51 |
O60-2-1-5 | 981.97 | 10 | 752.74 | 5 | 23.34 |
O60-2-1-6 | 956.39 | 9 | 680.46 | 5 | 28.85 |
O60-2-1-7 | 1052.40 | 11 | 752.96 | 5 | 28.45 |
O60-2-1-8 | 977.50 | 9 | 695.58 | 5 | 28.84 |
O60-2-1-9 | 959.39 | 10 | 723.61 | 5 | 24.58 |
Avg | 10.1 | 4.9 | 4.9 | 28.22 | |
A60-2-1-0 | 1133.63 | 11 | 836.54 | 6 | 26.21 |
A60-2-1-1 | 1187.66 | 10 | 911.33 | 6 | 23.27 |
A60-2-1-2 | 956.53 | 10 | 703.79 | 5 | 26.42 |
A60-2-1-3 | 969.58 | 10 | 781.73 | 5 | 19.37 |
A60-2-1-4 | 1074.74 | 10 | 793.69 | 5 | 26.15 |
A60-2-1-5 | 984.88 | 9 | 740.28 | 5 | 24.84 |
A60-2-1-6 | 999.87 | 10 | 754.71 | 5 | 24.52 |
A60-2-1-7 | 1061.10 | 11 | 780.28 | 5 | 26.46 |
A60-2-1-8 | 962.43 | 11 | 751.38 | 5 | 21.93 |
A60-2-1-9 | 941.98 | 9 | 705.99 | 5 | 25.05 |
Avg | 10.1 | 5.2 | 5.2 | 24.42 |
Table 21. Cost savings for instances with 100 requests
Instance | Non- collaboration | Collaboration | |||
Cost | NV | Cost | NV | $\phi$ | |
I100-2-1-0 | 2741.02 | 20 | 1500.16 | 10 | 45.27 |
I100-2-1-1 | 2308.06 | 17 | 1399.61 | 10 | 39.36 |
I100-2-1-2 | 2634.95 | 19 | 1481.37 | 10 | 43.78 |
I100-2-1-3 | 2517.73 | 18 | 1406.15 | 10 | 44.15 |
I100-2-1-4 | 2275.46 | 17 | 1471.77 | 9 | 35.32 |
I100-2-1-5 | 2393.39 | 17 | 1465.71 | 10 | 38.76 |
I100-2-1-6 | 2635.37 | 19 | 1482.92 | 10 | 43.73 |
I100-2-1-7 | 2628.76 | 19 | 1439.77 | 10 | 45.23 |
I100-2-1-8 | 1910.26 | 15 | 1277.58 | 9 | 33.12 |
I100-2-1-9 | 2337.01 | 17 | 1286.29 | 10 | 44.96 |
Avg | 17.8 | 9.8 | 41.37 | ||
O100-2-1-0 | 1791.81 | 15 | 1215.92 | 9 | 32.14 |
O100-2-1-1 | 1692.20 | 14 | 1113.13 | 8 | 34.22 |
O100-2-1-2 | 1690.38 | 14 | 1066.12 | 8 | 36.93 |
O100-2-1-3 | 1803.45 | 15 | 1166.47 | 9 | 35.32 |
O100-2-1-4 | 1641.55 | 14 | 1146.62 | 9 | 30.15 |
O100-2-1-5 | 1924.70 | 15 | 1223.53 | 9 | 36.43 |
O100-2-1-6 | 1606.09 | 14 | 1062.43 | 8 | 33.85 |
O100-2-1-7 | 1786.01 | 14 | 1224.31 | 9 | 31.45 |
O100-2-1-8 | 1538.25 | 13 | 971.56 | 7 | 36.84 |
O100-2-1-9 | 1582.04 | 13 | 1098.25 | 8 | 30.58 |
Avg | 14.1 | 8.4 | 33.79 | ||
A100-2-1-0 | 1760.57 | 14 | 1212.68 | 9 | 31.12 |
A100-2-1-1 | 1809.52 | 15 | 1271.73 | 9 | 29.72 |
A100-2-1-2 | 1717.81 | 14 | 1129.63 | 8 | 34.24 |
A100-2-1-3 | 1497.94 | 10 | 1162.85 | 8 | 22.37 |
A100-2-1-4 | 1611.69 | 14 | 1190.23 | 9 | 26.15 |
A100-2-1-5 | 1613.52 | 14 | 1093.48 | 8 | 32.23 |
A100-2-1-6 | 1895.50 | 15 | 1208.76 | 9 | 36.23 |
A100-2-1-7 | 1764.98 | 14 | 1174.24 | 8 | 33.47 |
A100-2-1-8 | 1764.23 | 14 | 1154.51 | 9 | 34.56 |
A100-2-1-9 | 1727.48 | 14 | 1217.18 | 10 | 29.54 |
Avg | 13.8 | 8.7 | 30.96 |
Table 4. Notations of performance indicators and their description
Notations | Description |
UB | The best cost obtained by CPLEX solver in a preset running time. |
LB | The lower bound obtained by CPLEX solver in a preset running time |
Ini | The cost of the best initial solution obtained by GRASP-ILS |
Zmin | The best cost of 10 runs for each meta-heuristic |
Zavg | The average cost of 10 runs for each meta-heuristic |
Dev | The standard deviation of the costs obtained in ten runs by each meta-heuristic. |
$Imp_{Ini}$ | The improvement of best cost over Ini. For CPLEX solver $Imp_{Ini}$ is calculated by ${{(UB - Ini)} / {UB}}*100\%$ For meta-heuristics, $Imp_{Ini}$ is calculated by$ {{({z_{min}} - Ini)} /{{z_{min}}}}*100\%$ |
$Gap_{LB}$ | The percentage gap between the best cost and LB. For CPLEX solver, $Gap_{LB}$ is calculated by $Gap_{LB} = {{(UB - Ini)} /{UB}}*100\%$ For meta-heuristics, $Gap_{LB}$ is calculated by$ {{({z_{min}} - LB)} /{{z_{min}}}}*100\%$ |
$Imp_{Cplex}$ | The improvement of the best cost obtained by meta-heuristics over the best cost obtained by CPLEX solver.$Imp_{Cplex}$ is calculated as:${{(UB - {z_{min}})} /{UB}}*100\%$ |
$Imp_{GRASP-ILS,GRASP}$ | The improvement of over. It is calculated as: ${{({Z_{min,GRASP}} - {z_{min,GRASP - ILS}})} / {{z_{min,GRASP - ILS}}}}*100\%$ |
$Imp_{GRASP-ILS,ILS}$ | The improvement of over. It is calculated as: ${{({Z_{min,ILS}} - {z_{min,GRASP - ILS}})} / {{z_{min,GRASP - ILS}}}}*100\%$ |
NV | The average total number of vehicles used in the transportation |
$Cost_{N}$ | The total transportation cost of the shippers without collaboration obtained by CPLEX solver. |
$Cost_{C}$ | The total transportation cost of the shippers with collaboration, which is the best objective value of CPLEX solver and GRASP-ILS. |
$\phi$ | The cost savings in percentage achieved by the collaboration among the shippers. is defined as: ${{({Cost_N} - {Cost_C})} /{{Cost_N}}}*100\%$ |
$CPU_{avg}$ | The average execution time in seconds for meta-heuristics |
C. Archetti and M. G. Speranza , Vehicle routing problems with split deliveries, International Transactions in Operational Research, 19 (2012) , 3-22. doi: 10.1111/j.1475-3995.2011.00811.x. | |
J. F. Audy , S. D'Amours and L. M. Rousseau , Cost allocation in the establishment of a collaborative transportation agreement-an application in the furniture industry, Journal of the Operational Research Society, 62 (2011) , 960-970. | |
M. Battarra , J. F. Cordeau and M. Iori , Pickup-and-delivery problems for goods transportation, Vehicle routing: problems, methods, and applications. MOS/SIAM series on optimization, (2014) , 161-192. | |
R. Bent and P. Van Hentenryck , A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows, Computers & Operations Research, 33 (2006) , 875-893. | |
G. Berbeglia , J. F. Cordeau , I. Gribkovskaia and G. Laporte , Static pickup and delivery problems: a classification scheme and survey, Top, 15 (2007) , 1-31. doi: 10.1007/s11750-007-0009-0. | |
S. Berger and C. Bierwirth , Solutions to the request reassignment problem in collaborative carrier networks, Transportation Research Part E: Logistics and Transportation Review, 46 (2010) , 627-638. | |
N. Bianchessi and G. Righini , Heuristic algorithms for the vehicle routing problem with simultaneous pick-up and delivery, Computers & Operations Research, 34 (2007) , 578-594. | |
J. Crispim and J. Brandão , Metaheuristics applied to mixed and simultaneous extensions of vehicle routing problems with backhauls, Journal of the Operational Research Society, 34 (2005) , 1296-1302. | |
B. Dai and H. Chen , Mathematical model and solution approach for collaborative logistics in less than truckload (LTL) transportation, Computers & Industrial Engineering, 2009. CIE 2009. International Conference on IEEE, (2009) , 767-772. | |
J. Dethloff , Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous delivery and pick-up, Operations Research-Spektrum, 23 (2001) , 79-96. doi: 10.1007/PL00013346. | |
M. Dror and P. Trudeau , Savings by split delivery routing, Transportation Science, 23 (1989) , 141-145. | |
O. Ergun , G. Kuyzu and M. Savelsbergh , Shipper collaboration, Computers & Operations Research, 34 (2007a) , 1551-1560. | |
O. Ergun , G. Kuyzu and M. Savelsbergh , Reducing truckload transportation costs through collaboration, Transportation Science, 41 (2007b) , 206-221. | |
T. A. Feo and J. F. Bard , Flight scheduling and maintenance base planning, Management Science, 35 (1989) , 1415-1432. | |
M. Frisk , M. Göthe-Lundgren , K. Jörnsten and M. Rönnqvist , Cost allocation in collaborative forest transportation, European Journal of Operational Research, 205 (2010) , 448-458. | |
Y. Gajpal and P. Abad , An ant colony system (ACS) for vehicle routing problem with simultaneous delivery and pickup, Computers & Operations Research, 36 (2009) , 3215-3223. | |
F. P. Goksal , I. Karaoglan and F. Altiparmak , A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery, Computers & Industrial Engineering, 65 (2013) , 39-53. | |
M. Y. Lai , C. S. Liu and X. J. Tong , A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows, Journal of Industrial & Management Optimization, 6 (2010) , 435-451. doi: 10.3934/jimo.2010.6.435. | |
H. Li and A. Lim , A metaheuristic for the pickup and delivery problem with time windows, International Journal on Artificial Intelligence Tools, 12 (2003) , 173-186. | |
J. Li , P. M. Pardalos , H. Sun , J. Pei and Y. Zhang , Iterated local search embedded adaptive neighborhood selection approach for the multi-depot vehicle routing problem with simultaneous deliveries and pickups, Expert Systems with Applications, 42 (2015) , 3551-3561. | |
R. Liu , X. Xie , V. Augusto and C. Rodriguez , Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care, European Journal of Operational Research, 230 (2013) , 475-486. doi: 10.1016/j.ejor.2013.04.044. | |
H. R. Lourenço, O. C. Martin and T. Stützle, Iterated local search, in In Handbook of metaheuristics, Springer US, 57 (2003), 321–353. | |
Q. Lu and M. M. Dessouky , A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows, European Journal of Operational Research, 175 (2006) , 672-687. | |
H. Min , The multiple vehicle routing problem with simultaneous delivery and pick-up points, Transportation Research Part A: General, 23 (1989) , 377-386. | |
S. Mitra , An algorithm for the generalized vehicle routing problem with backhauling, Asia-Pacific Journal of Operational Research, 22 (2005) , 153-169. doi: 10.1142/S0217595905000522. | |
S. Mitra , A parallel clustering technique for the vehicle routing problem with split deliveries and pickups, Journal of the operational Research Society, 59 (2008) , 1532-1546. | |
G. Nagy and S. Salhi , Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries, European Journal of Operational Research, 162 (2005) , 126-141. | |
W. P. Nanry and J. W. Barnes , Solving the pickup and delivery problem with time windows using reactive tabu search, Transportation Research Part B: Methodological, 34 (2000) , 107-121. | |
M. Nowak , Ö Ergun and C. C. White Ⅲ , Pickup and delivery with split loads, Transportation Science, 42 (2008) , 32-43. | |
M. Nowak , Ö Ergun and C. C. White Ⅲ , An empirical study on the benefit of split loads with the pickup and delivery problem, European Journal of Operational Research, 198 (2009) , 734-740. | |
G. Pankratz , A grouping genetic algorithm for the pickup and delivery problem with time windows, Or Spectrum, 27 (2005) , 21-41. doi: 10.1007/s00291-004-0173-7. | |
P. Pelagagge , L. Fratocchi and A. C. Caputo , A genetic approach for freight transportation planning, Industrial Management & Data Systems, 106 (2006) , 719-738. | |
D. Pisinger and S. Ropke , A general heuristic for vehicle routing problems, Computers & operations research, 34 (2007) , 2403-2435. doi: 10.1016/j.cor.2005.09.012. | |
C. Prins , N. Labadi and M. Reghioui , Tour splitting algorithms for vehicle routing problems, International Journal of Production Research, 47 (2009) , 507-535. | |
M. Reghioui , C. Prins and N. Labadi , GRASP with path relinking for the capacitated arc routing problem with time windows, InWorkshops on Applications of Evolutionary Computation, (2007) , 722-731. | |
J. Renaud , F. F. Boctor and G. Laporte , Perturbation heuristics for the pickup and delivery traveling salesman problem, Computers & Operations Research, 29 (2002) , 1129-1141. doi: 10.1016/S0305-0548(99)00066-0. | |
S. Ropke and D. Pisinger , An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows, Transportation Science, 40 (2006a) , 455-472. | |
S. Ropke and D. Pisinger , A unified heuristic for a large class of vehicle routing problems with backhauls, European Journal of Operational Research, 171 (2006) , 750-775. doi: 10.1016/j.ejor.2004.09.004. | |
S. Salhi and G. Nagy , A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling, Journal of the operational Research Society, 50 (1999) , 1034-1042. | |
R. Sprenger and L. Monch , A methodology to solve large-scale cooperative transportation planning problems, European Journal of Operational Research, 223 (2012) , 626-636. | |
A. Subramanian , L. M. Drummond , L. M. D. A., C. Bentes , L. S. Ochi and R. Farias , A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery, Computers & Operations Research, 223 (2010) , 1899-1911. | |
A. Subramanian , E. Uchoa and L. S. Ochi , A hybrid algorithm for a class of vehicle routing problems, Computers & Operations Research, 40 (2013) , 2519-2531. | |
A. S. Tasan and M. Gen , A genetic algorithm based approach to vehicle routing problem with simultaneous pick-up and deliveries, Computers & Industrial Engineering, 62 (2012) , 755-761. | |
F. L. Usberti , P. M. França and A. L. M. França , GRASP with evolutionary path-relinking for the capacitated arc routing problem, Computers & Operations Research, 40 (2013) , 3206-3217. doi: 10.1016/j.cor.2011.10.014. | |
N. A. Wassan , A. H. Wassan and G. Nagy , A reactive tabu search algorithm for the vehicle routing problem with simultaneous pickups and deliveries, Journal of Combinatorial Optimization, 15 (2008) , 368-386. doi: 10.1007/s10878-007-9090-4. | |
O. Yilmaz and S. Savasaneril , Collaboration among small shippers in a transportation market, European Journal of Operational Research, 218 (2012) , 408-415. doi: 10.1016/j.ejor.2011.11.018. | |
T. Zhang , W. A. Chaovalitwongse and Y. Zhang , Integrated ant colony and tabu search approach for time dependent vehicle routing problems with simultaneous pickup and delivery, Journal of Combinatorial Optimization, 28 (2014) , 288-309. doi: 10.1007/s10878-014-9741-1. |
Isolated transportation planning of each shipper in forward and reverse logistics
Collaborative transportation planning of all shippers in forward and reverse logistics
Illustration of the insertion positions for a product depot
Illustration of the insertion positions for a customer
Illustration of the insertion positions for a recycle depot