\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Shipper collaboration in forward and reverse logistics

  • * Corresponding author: Nengmin Wang

    * Corresponding author: Nengmin Wang 
Abstract / Introduction Full Text(HTML) Figure(5) / Table(21) Related Papers Cited by
  • In less than truckload transportation, shippers collaborate to reduce their logistics costs by consolidating their transportation requests in the procurement of transportation services from a carrier for serving the requests. In this paper, we study shipper collaboration in forward and reverse logistics, in which multiple shippers with forward or/and reverse logistics operations consolidate their transportation requests. In the forward and reverse logistics, manufacturers deliver new products to their customers and used products are collected from customers and transported to remanufacturers for repair or reproduction. This gives rise to a new vehicle routing problem with pickup and delivery requests and three different types of depots (product depots, vehicle depots and recycle depots). A hybrid approach combining greedy randomized adaptive search procedure (GRASP) and iterated local search (ILS) is proposed to find a near optimal solution of the problem. Numerical experiments on a large set of randomly generated instances with different problem sizes demonstrate that shipper collaboration in forward and reverse logistics can realize significant cost savings compared with the isolated operation of each shipper without cooperation, and the proposed approach is effective in the sense that it can find a high quality solution in a reasonable computation time.

    Mathematics Subject Classification: Primary: 90BXX; Secondary: 90B06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Isolated transportation planning of each shipper in forward and reverse logistics

    Figure 2.  Collaborative transportation planning of all shippers in forward and reverse logistics

    Figure 3.  Illustration of the insertion positions for a product depot

    Figure 4.  Illustration of the insertion positions for a customer

    Figure 5.  Illustration of the insertion positions for a recycle depot

    Table 1.  The comparison of the first improvement and the best improvement

    Instance set Best improvement First improvement
    CPU Gap CPU Gap
    I40 827.63 5.20 29.22 5.18
    O40 796.54 0.62 35.18 0.58
     | Show Table
    DownLoad: CSV

    Table 2.  The comparison of two strategies

    Instance set General strategy Speedup strategy
    CPU Gap CPU Gap
    I40 327.63 5.18 29.22 5.18
    O40 296.54 0.61 35.18 0.58
     | Show Table
    DownLoad: CSV

    Table 3.  Parameter tuning according to instance size

    Description Parameter Value
    Small instances
    (20 requests)
    Medium instances
    (40 requests)
    Large instances
    (60 requests)
    Large instances
    (100 requests)
    Number of GRASP iterations np 10 10 15 15
    Number of ILS iterations ni 5 10 15 20
    RCL size nrcl 3 5 7 7
     | Show Table
    DownLoad: CSV

    Table 5.  Results for comparison of GRASP-ILS and CPLEX solver

    Instance set CPLEX GRASP-ILS
    ImpIni GapLB CPU ImpIni ImpCplex GapLB CPU
    I20 -- 0.00 2101.07 -- 0.00 0.00 3.17
    O20 -- 0.00 1077.42 -- 0.00 0.00 1.92
    A20 -- 0.00 1350.15 -- 0.00 0.00 2.49
    Average 0.00 1509.55 0.00 0.00 2.53
    I40 1.44 28.47 21600.00 6.57 5.18 24.58 29.22
    O40 6.02 10.78 21600.00 6.37 0.58 10.27 35.18
    A40 3.33 20.89 21600.00 6.61 3.58 17.91 29.94
    Average 3.60 20.05 21600.00 6.52 3.11 17.59 31.45
    I60 2.74 34.25 21600.00 12.45 9.99 26.73 125.42
    O60 4.77 28.38 21600.00 16.85 12.63 18.00 144.84
    A60 3.35 28.74 21600.00 14.78 11.81 19.18 148.35
    Average 3.62 30.46 21600.00 13.70 12.47 21.30 139.54
    I100 1.62 40.24 21600.00 16.85 13.00 31.27 246.32
    O100 2.57 38.25 21600.00 21.11 15.24 23.55 292.72
    A100 1.83 34.56 21600.00 19.52 14.68 23.17 282.45
    Average 2.01 37.68 21600.00 19.16 14.31 26.00 273.83
     | Show Table
    DownLoad: CSV

    Table 6.  Summarized results for comparison among GRASP-ILS, GRASP and ILS

    Instance set
    ImpGRASP-ILS, GRASP ImpGRASP-ILS, ILS
    I20 6.51 3.17
    O20 1.87 0.86
    A20 7.65 3.68
    Average 5.34 2.57
    I40 3.95 3.71
    O40 3.00 3.23
    A40 6.75 3.62
    Average 4.57 3.52
    I60 4.09 2.65
    O60 7.42 0.73
    A60 6.35 4.64
    Average 5.95 2.67
    I100 7.20 4.19
    O100 6.59 3.78
    A100 5.00 4.06
    Average 6.26 4.01
     | Show Table
    DownLoad: CSV

    Table 7.  Summarized results for deviations among GRASP-ILS, GRASP and ILS

    Instance set GRASP ILS GRASP-ILS
    Dev Dev Dev
    I20 1.93 4.31 0.37
    O20 0.26 0.43 0.01
    A20 1.21 5.23 0.76
    Average 1.13 3.32 0.38
    I40 4.46 7.73 0.42
    O40 3.81 7.01 0.44
    A40 3.68 8.65 0.89
    Average 3.98 7.80 0.58
    I60 6.92 11.58 0.51
    O60 4.80 6.72 0.81
    A60 4.09 8.66 0.92
    Average 5.27 8.99 0.75
    I100 7.04 12.38 0.88
    O100 5.25 8.96 1.16
    A100 5.40 9.31 1.12
    Average 5.90 10.22 1.05
     | Show Table
    DownLoad: CSV

    Table 8.  Summarized results of geographical distributions of customers on cost savings

    Geographical distributions of customers Non-collaboration Nv Collaboration Nv $\phi$
    I20 4.3 2.3 22.57
    O20 4.1 2 17.90
    A20 4.2 2.1 10.76
    I40 8 6 31.02
    O40 7.3 3.5 24.19
    A40 7.5 3.9 16.35
    I60 11 6.3 33.31
    O60 10.1 4.9 28.22
    A60 10.1 5.2 24.42
    I100 17.8 9.8 41.37
    O100 14.1 8.4 33.79
    A100 13.8 8.7 30.96
     | Show Table
    DownLoad: CSV

    Table 9.  Summarized results of number of requests on the cost savings

    Customer Requests Non-collaboration Nv Collaboration Nv $\phi$
    I20 4.3 2.3 22.57
    I40 8 6 31.02
    I60 11 6.3 33.31
    I100 17.8 9.8 41.37
    Average 4.2 2.1 17.08
    O20 4.1 2 17.90
    O40 7.3 3.5 24.19
    O60 10.1 4.9 28.22
    O100 14.1 8.4 33.79
    Average 7.6 4.4 23.85
    A20 4.2 2.1 10.76
    A40 7.5 3.9 16.35
    A60 10.1 5.2 24.42
    A100 13.8 8.7 30.96
    Average 10.4 5.5 28.65
     | Show Table
    DownLoad: CSV

    Table 10.  Detailed results of CPLEX solver and GRASP-ILS for instances with 20 requests

    Instance CPLEX GRASP-ILS
    Ini UB LB CPU GapLB Zmin CPU Zavg CPUavg ImpCplex GapLB
    I20-2-1-0 / 459.26 459.26 6727.61 0.00 459.26 6.24 459.26 7.25 0.00 0.00
    I20-2-1-1 / 366.66 366.66 142.44 0.00 366.66 2.23 366.66 4.47 0.00 0.00
    I20-2-1-2 / 478.19 478.19 1360.56 0.00 478.19 6.64 478.19 8.24 0.00 0.00
    I20-2-1-3 / 360.24 360.24 128.19 0.00 360.24 1.86 365.33 1.89 0.00 0.00
    I20-2-1-4 / 383.24 383.24 8933.10 0.00 383.24 1.67 383.24 2.01 0.00 0.00
    I20-2-1-5 / 343.70 343.70 369.21 0.00 343.70 1.41 350.76 1.81 0.00 0.00
    I20-2-1-6 / 344.51 344.51 366.51 0.00 344.51 1.59 344.51 1.77 0.00 0.00
    I20-2-1-7 / 354.59 354.59 266.03 0.00 354.59 1.75 355.59 3.11 0.00 0.00
    I20-2-1-8 / 351.37 351.37 2202.84 0.00 351.37 1.40 351.37 1.77 0.00 0.00
    I20-2-1-9 / 476.32 476.32 514.23 0.00 476.32 6.97 476.32 8.15 0.00 0.00
    Avg 2101.07 0.00 3.17
    O20-2-1-0 / 240.46 240.46 817.75 0.00 240.46 2.18 240.46 2.51 0.00 0.00
    O20-2-1-1 / 260.84 260.84 727.20 0.00 260.84 1.84 260.84 2.13 0.00 0.00
    O20-2-1-2 / 250.62 250.62 945.73 0.00 250.62 2.50 250.62 2.66 0.00 0.00
    O20-2-1-3 / 254.79 254.79 1213.25 0.00 254.79 1.50 254.79 1.83 0.00 0.00
    O20-2-1-4 / 273.79 273.79 563.98 0.00 273.79 2.03 273.85 1.99 0.00 0.00
    O20-2-1-5 / 269.61 269.61 2227.00 0.00 269.61 1.46 269.61 2.05 0.00 0.00
    O20-2-1-6 / 260.31 260.31 1456.89 0.00 260.31 1.64 260.41 2.33 0.00 0.00
    O20-2-1-7 / 245.95 245.95 1323.50 0.00 245.95 1.69 246.06 2.32 0.00 0.00
    O20-2-1-8 / 240.28 240.28 685.00 0.00 240.28 1.70 240.28 2.28 0.00 0.00
    O20-2-1-9 / 229.92 229.92 813.89 0.00 229.92 2.70 229.96 2.41 0.00 0.00
    Avg 1077.42 0.00 1.92 0.00 0.00
    A20-2-1-0 / 362.31 362.31 987.80 0.00 362.31 1.59 366.24 1.85 0.00 0.00
    A20-2-1-1 / 444.80 444.80 1188.06 0.00 444.80 7.26 444.80 8.29 0.00 0.00
    A20-2-1-2 / 329.67 329.67 2358.72 0.00 329.67 1.37 334.31 1.85 0.00 0.00
    A20-2-1-3 / 363.62 363.62 1206.36 0.00 363.62 4.06 372.23 5.38 0.00 0.00
    A20-2-1-4 / 343.77 343.77 2440.98 0.00 343.77 1.66 343.77 1.91 0.00 0.00
    A20-2-1-5 / 287.74 287.74 1266.59 0.00 287.74 1.99 294.17 1.55 0.00 0.00
    A20-2-1-6 / 338.23 338.23 821.69 0.00 338.23 1.56 338.23 1.70 0.00 0.00
    A20-2-1-7 / 290.21 290.21 985.11 0.00 290.21 1.40 292.05 1.59 0.00 0.00
    A20-2-1-8 / 314.20 314.20 1324.84 0.00 314.20 2.13 314.20 1.70 0.00 0.00
    A20-2-1-9 / 323.60 323.60 921.38 0.00 323.60 1.93 323.60 2.18 0.00 0.00
    Avg 1350.15 0.00 2.49 0.00 0.00
     | Show Table
    DownLoad: CSV

    Table 11.  Detailed results of CPLEX solver and GRASP-ILS for instances with 40 requests

    Instance CPLEX GRASP-ILS
    Ini UB LB CPU ImpIni GapLB Zmin CPU Zavg CPUavg ImpIni ImpCplex GapLB
    I40-2-1-0 764.73 733.02 554.38 21600.00 4.15 24.37 706.64 31.77 722.04 35.64 7.60 3.60 21.55
    I40-2-1-1 617.81 617.81 432.47 21600.00 0.00 30.00 600.90 30.07 607.03 33.09 2.74 2.74 28.03
    I40-2-1-2 776.04 776.04 526.08 21600.00 0.00 32.21 729.24 31.07 729.24 33.12 6.03 6.03 27.86
    I40-2-1-3 718.16 702.54 545.94 21600.00 2.18 22.29 651.55 26.00 651.55 28.16 9.28 7.26 16.21
    I40-2-1-4 720.41 716.43 519.91 21600.00 0.55 27.43 699.59 26.37 699.59 27.97 2.89 2.35 25.68
    I40-2-1-5 748.66 748.66 475.02 21600.00 0.00 36.55 647.36 27.67 647.36 31.16 13.53 13.53 26.62
    I40-2-1-6 615.92 615.92 435.58 21600.00 0.00 29.28 590.24 29.90 591.42 32.15 4.17 4.17 26.20
    I40-2-1-7 664.83 662.64 432.11 21600.00 0.33 34.79 612.68 28.53 613.44 29.29 7.84 7.54 29.47
    I40-2-1-8 634.10 594.85 447.33 21600.00 6.19 24.80 573.59 32.61 574.75 34.14 9.54 3.57 22.01
    I40-2-1-9 611.25 604.84 466.03 21600.00 1.05 22.95 598.44 28.16 601.82 31.40 2.10 1.06 22.13
    Avg 21600.00 1.44 28.47 29.22 31.61 6.57 5.18 24.58
    O40-2-1-0 590.88 494.73 486.52 21600.00 16.27 1.66 494.73 30.31 497.25 32.04 16.27 0.00 1.66
    O40-2-1-1 484.61 443.19 390.45 21600.00 9.99 11.90 434.04 36.80 439.23 35.30 10.44 2.06 10.04
    O40-2-1-2 452.71 445.80 401.58 21600.00 1.53 9.92 445.80 34.44 445.80 36.68 1.53 0.00 9.92
    O40-2-1-3 604.15 529.67 456.10 21600.00 12.33 13.89 523.35 36.44 523.35 37.24 13.37 1.19 12.85
    O40-2-1-4 551.18 550.47 458.60 21600.00 0.13 16.69 549.35 37.96 549.35 41.00 0.33 0.20 16.52
    O40-2-1-5 627.43 576.14 486.90 21600.00 8.17 15.49 573.11 34.70 573.11 36.25 8.66 0.53 15.04
    O40-2-1-6 496.89 492.06 422.04 21600.00 0.97 14.23 489.14 39.24 489.14 41.56 1.56 0.59 13.72
    O40-2-1-7 545.21 532.03 492.50 21600.00 2.78 7.43 528.80 31.72 542.87 36.13 3.01 0.61 6.86
    O40-2-1-8 441.62 427.55 427.55 21600.00 3.19 0.00 427.55 32.20 427.82 40.79 3.19 0.00 0.00
    O40-2-1-9 611.65 582.21 485.50 21600.00 4.81 16.61 578.85 37.98 579.14 37.03 5.36 0.58 16.13
    Avg 21600.00 6.02 10.78 35.18 37.40 6.37 0.58 10.27
    A40-2-1-0 595.16 581.93 463.33 21600.00 2.22 20.38 550.20 26.67 563.08 29.48 7.55 5.45 15.79
    A40-2-1-1 617.54 617.54 428.57 21600.00 0.00 30.60 597.17 29.64 601.48 32.31 3.30 3.30 28.23
    A40-2-1-2 685.71 593.58 508.05 21600.00 13.44 14.41 582.03 32.10 582.03 36.22 15.12 1.95 12.71
    A40-2-1-3 511.22 511.22 383.62 21600.00 0.00 24.96 505.21 31.86 505.21 34.47 1.18 1.18 24.07
    A40-2-1-4 574.55 569.49 460.72 21600.00 0.88 19.10 567.77 33.23 568.40 33.13 1.18 0.30 18.85
    A40-2-1-5 626.75 626.75 484.73 21600.00 0.00 22.66 617.34 28.18 617.38 30.09 1.50 1.50 21.48
    A40-2-1-6 574.52 572.59 457.56 21600.00 1.90 20.09 537.91 32.50 560.92 37.04 6.37 6.06 14.94
    A40-2-1-7 615.58 552.47 494.52 21600.00 10.90 10.49 542.06 30.23 548.20 28.19 11.94 1.88 8.77
    A40-2-1-8 642.09 630.61 480.02 21600.00 1.79 23.88 600.61 27.93 600.61 29.57 6.46 4.76 20.08
    A40-2-1-9 714.16 698.33 542.39 21600.00 2.22 22.33 632.33 27.06 635.86 30.86 11.46 9.45 14.22
    Avg 21600.00 3.33 20.89 29.94 32.14 6.61 3.58 17.91
     | Show Table
    DownLoad: CSV

    Table 12.  Detailed results of CPLEX solver and GRASP-ILS for instances with 60 requests

    Instance CPLEX GRASP-ILS
    Ini UB LB CPU ImpIni GapLB Zmin CPU Zavg CPUavg ImpIni ImpCplex GapLB
    I60-2-1-0 1075.15 1011.77 647.03 21600.00 5.89 36.05 911.77 99.40 914.95 114.83 15.20 9.88 29.04
    I60-2-1-1 1190.63 1187.76 774.42 21600.00 0.24 34.80 987.76 118.70 988.14 130.24 17.04 16.84 21.60
    I60-2-1-2 950.96 939.23 602.05 21600.00 1.23 35.90 877.23 131.62 879.37 139.26 7.75 6.60 31.37
    I60-2-1-3 1088.70 1082.44 690.16 21600.00 0.57 36.24 882.44 137.82 889.93 122.66 18.95 18.48 21.79
    I60-2-1-4 1047.69 1000.73 685.00 21600.00 4.48 31.55 896.87 108.94 900.72 119.33 14.40 10.38 23.62
    I60-2-1-5 1026.03 1026.03 632.75 21600.00 0.00 38.33 996.95 138.59 997.19 135.02 2.83 2.83 36.53
    I60-2-1-6 1214.28 1143.88 758.39 21600.00 5.80 33.70 1043.88 119.96 1046.20 126.73 14.03 8.74 27.35
    I60-2-1-7 993.02 993.02 642.58 21600.00 0.00 35.29 944.32 132.32 960.94 137.32 4.90 4.90 31.95
    I60-2-1-8 946.14 918.94 625.61 21600.00 2.87 31.92 818.94 132.87 826.45 119.74 13.44 10.88 23.61
    I60-2-1-9 1029.63 965.24 687.93 21600.00 6.25 28.73 865.24 133.94 867.75 135.43 15.97 10.36 20.49
    Avg 21600.00 2.74 34.25 125.42 12.45 9.99 26.73
    O60-2-1-0 778.81 742.35 556.24 21600.00 4.68 25.07 652.35 146.37 672.06 140.72 16.24 12.12 14.73
    O60-2-1-1 860.37 792.55 585.30 21600.00 7.88 26.15 746.22 144.23 750.48 150.35 13.27 5.85 21.56
    O60-2-1-2 883.39 832.49 606.55 21600.00 5.76 27.14 732.49 138.82 736.08 137.72 17.08 12.01 17.19
    O60-2-1-3 975.67 897.76 686.25 21600.00 7.99 23.56 787.76 128.96 795.54 144.19 19.26 12.25 12.89
    O60-2-1-4 889.25 832.01 565.60 21600.00 6.44 32.02 727.32 159.57 734.02 163.88 18.21 12.58 22.24
    O60-2-1-5 891.08 852.47 631.60 21600.00 4.33 25.91 752.74 150.60 755.68 145.87 15.53 11.70 16.09
    O60-2-1-6 813.00 813.00 542.76 21600.00 0.00 33.24 680.46 129.71 680.46 147.45 16.30 16.30 20.24
    O60-2-1-7 935.69 881.76 640.60 21600.00 5.76 27.35 752.96 162.61 761.11 172.49 19.53 14.61 14.92
    O60-2-1-8 850.19 835.58 571.37 21600.00 1.72 31.62 695.58 134.58 696.81 139.18 18.19 16.75 17.86
    O60-2-1-9 850.23 823.61 562.61 21600.00 3.13 31.69 723.61 152.90 727.63 150.04 14.89 12.14 22.25
    Avg 21600.00 4.77 28.38 144.84 16.85 12.63 18.00
    A60-2-1-0 936.24 936.24 594.70 21600.00 0.00 36.48 836.54 161.45 836.60 163.57 10.65 10.65 28.91
    A60-2-1-1 1072.31 1072.31 663.76 21600.00 0.00 38.1 911.33 161.93 941.39 158.79 15.01 15.01 27.17
    A60-2-1-2 859.84 803.79 620.37 21600.00 6.52 22.82 703.79 135.40 703.85 151.11 18.15 12.44 11.85
    A60-2-1-3 950.17 881.73 663.68 21600.00 7.20 24.73 781.73 122.15 782.94 123.85 17.73 11.34 15.10
    A60-2-1-4 912.08 902.08 622.80 21600.00 1.10 30.96 793.69 148.34 806.85 147.38 12.98 12.02 21.53
    A60-2-1-5 908.24 908.24 611.25 21600.00 0.00 32.7 740.28 148.01 741.38 148.81 18.49 18.49 17.43
    A60-2-1-6 919.06 854.71 676.50 21600.00 7.00 20.85 754.71 146.15 756.53 157.06 17.88 11.70 10.36
    A60-2-1-7 942.98 880.28 647.62 21600.00 6.65 26.43 780.28 155.59 796.40 155.86 17.25 11.36 17.00
    A60-2-1-8 799.61 799.61 594.75 21600.00 0.00 25.62 751.38 140.81 757.58 142.27 6.03 6.03 20.85
    A60-2-1-9 817.71 776.45 553.61 21600.00 5.05 28.7 705.99 163.67 712.95 157.17 13.66 9.07 21.58
    Avg 21600.00 3.35 28.74 148.35 14.78 11.81 19.18
     | Show Table
    DownLoad: CSV

    Table 13.  Detailed results of CPLEX solver and GRASP-ILS for instances with 100 requests

    Instance CPLEX GRASP-ILS
    Ini UB LB CPU ImpIni GapLB Zmin CPU Zavg CPUavg ImpIni ImpCplex GapLB
    I100-2-1-0 1735.62 1680.34 1041.47 21600.00 3.29 38.02 1500.16 242.56 1509.42 254.82 15.70 10.72 30.58
    I100-2-1-1 1651.57 1634.89 1015.27 21600.00 1.02 37.90 1399.61 244.23 1409.80 271.59 18.00 14.39 27.46
    I100-2-1-2 1668.99 1668.99 907.93 21600.00 0.00 45.60 1481.37 264.12 1491.31 270.40 12.67 11.24 38.71
    I100-2-1-3 1764.60 1689.42 1077.17 21600.00 4.45 36.24 1406.15 200.51 1412.52 228.29 25.49 16.77 23.40
    I100-2-1-4 1686.00 1686.00 985.47 21600.00 0.00 41.55 1471.77 231.05 1479.38 237.84 14.56 12.71 33.04
    I100-2-1-5 1700.66 1700.66 878.73 21600.00 0.00 48.33 1465.71 265.97 1488.23 273.44 16.03 13.82 40.05
    I100-2-1-6 1692.38 1691.53 1017.12 21600.00 0.05 39.87 1482.92 258.92 1503.80 271.70 14.12 12.33 31.41
    I100-2-1-7 1645.66 1645.66 900.34 21600.00 0.00 45.29 1439.77 227.63 1442.38 242.32 14.30 12.51 37.47
    I100-2-1-8 1505.41 1478.50 927.61 21600.00 1.82 37.26 1277.58 261.05 1283.99 274.56 17.83 13.59 27.39
    I100-2-1-9 1541.52 1460.33 987.62 21600.00 5.56 32.37 1286.29 267.15 1315.68 277.42 19.84 11.92 23.22
    Avg 21600.00 1.62 40.24 246.32 16.85 13.00 31.27
    O100-2-1-0 1467.93 1420.49 950.02 21600.00 3.34 33.12 1215.92 278.27 1225.50 288.86 20.73 14.40 21.87
    O100-2-1-1 1309.79 1309.79 836.30 21600.00 0.00 36.15 1113.13 316.97 1124.36 328.01 17.67 15.01 24.87
    O100-2-1-2 1283.48 1230.45 831.54 21600.00 4.31 32.42 1066.12 254.79 1068.68 263.26 20.39 13.36 22.00
    O100-2-1-3 1284.46 1321.90 810.99 21600.00 0.00 38.65 1166.47 300.23 1186.02 278.56 13.32 11.76 30.48
    O100-2-1-4 1382.26 1338.36 909.82 21600.00 3.28 32.02 1146.62 287.89 1151.50 298.72 20.55 14.33 20.65
    O100-2-1-5 1494.38 1431.12 903.18 21600.00 4.42 36.89 1223.53 294.71 1245.41 298.48 22.14 14.51 26.18
    O100-2-1-6 1318.96 1264.83 831.75 21600.00 4.28 34.24 1062.43 311.91 1064.81 321.69 24.15 16.00 21.71
    O100-2-1-7 1435.95 1432.51 894.75 21600.00 0.24 37.54 1224.31 306.67 1230.86 324.67 17.29 14.53 26.92
    O100-2-1-8 1254.70 1221.48 779.18 21600.00 2.72 36.21 971.56 296.99 1002.10 317.68 29.14 20.46 19.80
    O100-2-1-9 1381.18 1339.26 866.90 21600.00 3.13 35.27 1098.25 278.80 1119.88 283.29 25.76 18.00 21.06
    Avg 21600.00 2.57 35.25 292.72 21.11 15.24 23.55
    A100-2-1-0 1415.28 1404.33 863.94 21600.00 0.78 38.48 1212.68 235.67 1230.21 256.89 16.71 13.65 28.76
    A100-2-1-1 1696.07 1627.24 1168.36 21600.00 4.23 28.20 1271.73 269.87 1291.68 279.07 33.37 21.85 8.13
    A100-2-1-2 1328.88 1283.69 849.55 21600.00 3.52 33.82 1129.63 308.04 1132.34 325.42 17.64 12.00 24.79
    A100-2-1-3 1364.97 1360.34 865.59 21600.00 0.34 36.37 1162.85 263.527 1179.11 269.85 17.38 14.52 25.56
    A100-2-1-4 1433.15 1417.56 886.68 21600.00 1.10 37.45 1190.23 270.33 1197.46 281.37 20.41 16.04 25.50
    A100-2-1-5 1320.79 1320.79 802.64 21600.00 0.00 39.23 1093.48 267.46 1116.72 344.65 20.79 17.21 26.60
    A100-2-1-6 1450.78 1400.91 972.51 21600.00 3.56 30.58 1208.76 258.22 1212.17 356.84 20.02 13.72 19.54
    A100-2-1-7 1404.69 1371.23 920.23 21600.00 2.44 32.89 1174.24 364.28 1193.54 380.21 19.63 14.37 21.63
    A100-2-1-8 1334.8 1321.19 847.28 21600.00 1.03 35.87 1154.51 266.66 1177.15 345.79 15.62 12.62 26.61
    A100-2-1-9 1382.94 1365.60 918.36 21600.00 1.27 32.75 1217.18 320.42 1218.88 329.73 13.62 10.87 24.55
    Avg 21600.00 1.83 34.56 282.45 19.52 14.68 23.17
     | Show Table
    DownLoad: CSV

    Table 14.  Meta-heuristics results for instances with 20 requests

    Instance GRASP ILS GRASP-ILS
    Zmin Zavg Zmin Zavg Zmin ImpGRASP-ILS, GRASP ImpGRASP-ILS, ILS
    I20-2-1-0 459.26 459.26 459.26 459.26 459.26 0.00 0.00
    I20-2-1-1 449.88 449.88 366.66 366.66 366.66 22.70 0.00
    I20-2-1-2 478.19 478.19 478.19 478.19 478.19 0.00 0.00
    I20-2-1-3 449.29 459.44 360.24 415.28 360.24 24.72 0.00
    I20-2-1-4 387.33 413.78 387.33 412.08 383.24 1.07 1.07
    I20-2-1-5 364.89 370.22 364.89 373.59 343.70 6.17 6.17
    I20-2-1-6 344.51 344.51 344.51 344.51 344.51 0.00 0.00
    I20-2-1-7 379.50 407.70 426.47 479.74 354.59 7.03 20.27
    I20-2-1-8 363.34 368.28 366.19 376.44 351.37 3.41 4.22
    I20-2-1-9 476.32 476.32 476.32 494.04 476.32 0.00 0.00
    Avg 6.51 3.17
    O20-2-1-0 240.46 240.46 240.46 240.46 240.46 0.00 0.00
    O20-2-1-1 261.02 261.02 278.50 278.56 260.84 0.07 6.77
    O20-2-1-2 250.62 250.62 251.75 251.75 250.62 0.00 0.45
    O20-2-1-3 254.79 254.79 254.79 254.79 254.79 0.00 0.00
    O20-2-1-4 273.98 274.99 275.45 275.56 273.79 0.07 0.61
    O20-2-1-5 269.61 269.61 269.61 269.61 269.61 0.00 0.00
    O20-2-1-6 260.87 260.92 260.87 261.21 260.31 0.22 0.22
    O20-2-1-7 245.95 246.37 246.97 246.97 245.95 0.00 0.41
    O20-2-1-8 265.74 265.74 240.28 244.44 240.28 10.60 0.00
    O20-2-1-9 247.82 247.97 230.15 235.51 229.92 7.79 0.10
    Avg 1.87 0.86
    A20-2-1-0 367.97 367.97 367.91 379.79 362.31 1.56 1.55
    A20-2-1-1 444.8 444.80 444.80 444.80 444.80 0.00 0.00
    A20-2-1-2 364.77 375.31 364.77 404.68 329.67 10.65 10.65
    A20-2-1-3 412.44 439.21 423.93 456.66 363.62 13.43 16.59
    A20-2-1-4 415.4 415.40 343.77 397.64 343.77 20.84 0.00
    A20-2-1-5 295.37 297.82 299.91 305.22 287.74 2.65 4.23
    A20-2-1-6 340.74 340.74 338.23 338.74 338.23 0.74 0.00
    A20-2-1-7 298.51 304.03 301.26 304.94 290.21 2.86 3.81
    A20-2-1-8 314.20 314.20 314.20 314.20 314.20 0.00 0.00
    A20-2-1-9 400.40 400.40 323.60 361.33 323.60 23.73 0.00
    Avg 7.65 3.68
     | Show Table
    DownLoad: CSV

    Table 15.  Meta-heuristics results for instances with 40 requests

    Instance GRASP ILS GRASP-ILS
    Zmin Zavg Zmin Zavg Zmin ImpGRASP-ILS, GRASP ImpGRASP-ILS, ILS
    I40-2-1-0 733.03 769.61 741.58 773.84 706.64 3.73 4.94
    I40-2-1-1 617.81 617.81 610.54 675.38 600.90 2.81 1.60
    I40-2-1-2 756.99 806.65 755.90 772.53 729.24 3.81 3.66
    I40-2-1-3 651.55 681.20 718.16 718.16 651.55 0.00 10.22
    I40-2-1-4 699.59 731.00 720.42 720.42 699.59 0.00 2.98
    I40-2-1-5 718.38 761.48 672.90 771.28 647.36 10.97 3.95
    I40-2-1-6 605.91 639.66 627.27 700.22 590.24 4.35 6.27
    I40-2-1-7 653.35 653.35 612.68 686.02 612.68 6.64 0.00
    I40-2-1-8 601.37 635.83 582.26 645.55 573.59 4.84 1.51
    I40-2-1-9 612.71 654.01 610.28 677.78 598.44 2.38 1.98
    Avg 3.95 3.71
    O40-2-1-0 573.13 607.63 530.77 613.94 494.73 15.85 7.28
    O40-2-1-1 451.96 479.67 476.94 535.79 434.04 4.13 9.88
    O40-2-1-2 465.61 486.61 452.72 499.94 445.80 4.44 1.55
    O40-2-1-3 523.35 523.35 523.35 523.35 523.35 0.00 0.00
    O40-2-1-4 549.35 549.35 549.35 549.35 549.35 0.00 0.00
    O40-2-1-5 577.85 601.43 603.35 666.88 573.11 0.83 5.28
    O40-2-1-6 492.06 525.27 492.06 492.06 489.14 0.60 0.60
    O40-2-1-7 545.21 550.93 545.21 545.21 528.80 3.10 3.10
    O40-2-1-8 431.92 455.46 430.07 473.46 427.55 1.02 0.59
    O40-2-1-9 579.27 602.79 601.79 668.05 578.85 0.07 3.96
    Avg 3.00 3.23
    A40-2-1-0 636.15 636.28 551.33 631.55 550.20 15.62 0.21
    A40-2-1-1 606.64 644.56 616.86 622.47 597.17 1.59 3.30
    A40-2-1-2 587.75 587.75 582.03 583.37 582.03 0.98 0.00
    A40-2-1-3 506.85 506.85 508.34 559.68 505.21 0.32 0.62
    A40-2-1-4 573.67 573.78 568.42 570.30 567.77 1.04 0.11
    A40-2-1-5 683.98 697.73 617.34 703.95 617.34 10.79 0.00
    A40-2-1-6 587.71 660.17 569.77 572.96 537.91 9.26 5.92
    A40-2-1-7 615.47 645.69 605.92 703.23 542.06 13.54 11.78
    A40-2-1-8 624.30 670.44 624.30 702.84 600.61 3.94 3.94
    A40-2-1-9 697.84 724.57 697.60 816.89 632.33 10.36 10.32
    Avg 6.75 3.62
     | Show Table
    DownLoad: CSV

    Table 16.  Meta-heuristics results for instances with 60 requestss

    Instance GRASP ILS GRASP-ILS
    Zmin Zavg Zmin Zavg Zmin ImpGRASP-ILS, GRASP ImpGRASP-ILS, ILS
    I60-2-1-0 971.76 930.24 954.90 1040.17 911.77 6.58 4.73
    I60-2-1-1 997.55 990.98 997.55 1070.57 987.76 0.99 0.99
    I60-2-1-2 893.43 879.02 897.08 1033.44 877.23 1.85 2.26
    I60-2-1-3 907.53 902.23 901.81 1008.95 882.44 2.84 2.20
    I60-2-1-4 979.14 967.49 975.61 1121.17 896.87 9.17 8.78
    I60-2-1-5 1004.53 997.95 1004.53 1065.50 996.95 0.76 0.76
    I60-2-1-6 1061.43 1051.96 1056.81 1093.90 1043.88 1.68 1.24
    I60-2-1-7 1005.16 981.49 950.37 1110.89 944.32 6.44 0.64
    I60-2-1-8 882.39 854.26 854.36 965.17 818.94 7.75 4.33
    I60-2-1-9 890.19 877.62 870.52 1028.26 865.24 2.88 0.61
    Avg 4.09 2.65
    O60-2-1-0 713.15 746.03 703.50 758.65 652.35 9.32 3.73
    O60-2-1-1 820.25 872.50 782.50 820.53 746.22 9.92 0.55
    O60-2-1-2 782.26 799.70 761.74 868.31 732.49 6.79 0.15
    O60-2-1-3 847.18 875.98 820.05 853.67 787.76 7.54 0.52
    O60-2-1-4 776.48 845.20 771.15 817.65 727.32 6.76 0.64
    O60-2-1-5 820.66 851.19 763.93 844.07 752.74 9.02 0.40
    O60-2-1-6 708.48 714.50 680.46 680.46 680.46 4.12 0.00
    O60-2-1-7 816.27 830.39 781.70 811.56 752.96 8.41 1.16
    O60-2-1-8 723.94 759.78 715.02 806.47 695.58 4.08 0.00
    O60-2-1-9 783.28 871.56 747.26 771.70 723.61 8.25 0.18
    Avg 7.42 0.73
    A60-2-1-0 858.31 858.31 836.63 929.83 836.54 2.60 0.01
    A60-2-1-1 956.96 1024.04 952.71 1049.60 911.33 5.01 4.54
    A60-2-1-2 719.41 741.14 776.51 778.37 703.79 2.22 10.33
    A60-2-1-3 849.45 928.96 802.22 912.04 781.73 8.66 2.62
    A60-2-1-4 857.32 880.81 841.54 899.44 793.69 8.02 6.03
    A60-2-1-5 808.57 830.08 761.17 803.11 740.28 9.22 2.82
    A60-2-1-6 803.29 862.81 803.29 871.89 754.71 6.44 6.44
    A60-2-1-7 853.23 853.23 802.72 905.31 780.28 9.35 2.88
    A60-2-1-8 780.61 815.35 772.43 843.73 751.38 3.89 2.80
    A60-2-1-9 763.12 795.25 762.09 825.88 705.99 8.09 7.95
    Avg 6.35 4.64
     | Show Table
    DownLoad: CSV

    Table 17.  Meta-heuristics results for instances with 100 requests

    Instance GRASP ILS GRASP-ILS
    Zmin Zavg Zmin Zavg Zmin ImpGRASP-ILS, GRASP ImpGRASP-ILS, ILS
    I100-2-1-0 1638.35 1704.61 1609.09 1890.61 1500.16 9.21 7.26
    I100-2-1-1 1475.76 1550.51 1462.03 1720.88 1399.61 5.44 4.46
    I100-2-1-2 1549.56 1714.37 1519.43 1792.65 1481.37 4.60 2.57
    I100-2-1-3 1541.71 1630.81 1516.8 1799.58 1406.15 9.64 7.87
    I100-2-1-4 1586.41 1607.53 1501.97 1774.75 1471.77 7.79 2.05
    I100-2-1-5 1547.53 1591.87 1476.42 1763.20 1465.71 5.58 0.73
    I100-2-1-6 1594.07 1622.95 1501.05 1791.06 1482.92 7.50 1.22
    I100-2-1-7 1568.12 1653.99 1508.18 1741.59 1439.77 8.91 4.75
    I100-2-1-8 1340.87 1424.62 1358.42 1513.15 1277.58 4.95 6.33
    I100-2-1-9 1393.89 1430.99 1346.03 1604.42 1286.29 8.37 4.64
    Avg 7.20 4.19
    O100-2-1-0 1279.18 1347.70 1252.87 1352.97 1215.92 5.20 3.04
    O100-2-1-1 1169.86 1255.83 1149.36 1236.94 1113.13 5.10 3.25
    O100-2-1-2 1123.63 1191.98 1098.08 1156.11 1066.12 5.39 3.00
    O100-2-1-3 1272.18 1320.34 1209.93 1297.75 1166.47 9.06 3.73
    O100-2-1-4 1278.7 1376.42 1206.94 1273.12 1146.62 11.52 5.26
    O100-2-1-5 1282.2 1310.21 1264.78 1444.76 1223.53 4.80 3.37
    O100-2-1-6 1112.92 1195.06 1099.75 1266.59 1062.43 4.75 3.51
    O100-2-1-7 1271.97 1338.24 1231.68 1310.19 1224.31 3.89 0.60
    O100-2-1-8 1071.1 1141.54 1000.51 1190.17 971.56 10.25 2.98
    O100-2-1-9 1163.25 1211.45 1197.58 1339.77 1098.25 5.92 9.04
    Avg 6.59 3.78
    A100-2-1-0 1280.19 1361.66 1265.52 1359.89 1212.68 5.57 4.36
    A100-2-1-1 1362.77 1431.84 1362.04 1541.04 1271.73 7.16 7.10
    A100-2-1-2 1183.91 1240.90 1159.67 1326.68 1129.63 4.81 2.66
    A100-2-1-3 1214.65 1288.61 1198.17 1355.01 1162.85 2.73 3.04
    A100-2-1-4 1236.76 1325.19 1243.54 1400.64 1190.23 3.91 4.48
    A100-2-1-5 1177.71 1241.31 1144.83 1228.66 1093.48 7.70 4.70
    A100-2-1-6 1270.56 1328.54 1256.54 1336.74 1208.76 5.11 3.95
    A100-2-1-7 1227.98 1308.64 1221.57 1316.30 1174.24 4.58 4.03
    A100-2-1-8 1210.54 1298.73 1192.27 1288.85 1154.51 3.99 3.27
    A100-2-1-9 1271.11 1320.95 1253.95 1419.94 1217.18 4.43 3.02
    Avg 5.00 4.06
     | Show Table
    DownLoad: CSV

    Table 18.  Cost savings for instances with 20 requests

    Instance Non-collaboration Collaboration
    Cost NV Cost NV $\phi$
    I20-2-1-0 528.74 5 459.26 3 13.14
    I20-2-1-1 477.54 4 366.66 2 23.22
    I20-2-1-2 612.48 4 478.19 3 21.93
    I20-2-1-3 481.75 4 360.24 2 25.22
    I20-2-1-4 491.83 4 383.24 2 22.08
    I20-2-1-5 427.16 4 343.7 2 19.54
    I20-2-1-6 453.01 5 344.51 2 23.95
    I20-2-1-7 476.59 4 354.59 2 25.60
    I20-2-1-8 484.62 4 351.37 2 27.50
    I20-2-1-9 622.55 5 476.32 3 23.49
    Avg 4.3 2.3 22.57
    O20-2-1-0 283.63 4 240.46 2 15.22
    O20-2-1-1 299.27 4 260.84 2 12.84
    O20-2-1-2 336.31 4 250.62 2 25.48
    O20-2-1-3 316.26 4 254.79 2 19.44
    O20-2-1-4 329.42 5 273.79 2 16.89
    O20-2-1-5 323.26 4 269.61 2 16.60
    O20-2-1-6 293.28 4 260.31 2 11.24
    O20-2-1-7 348.76 4 245.95 2 29.48
    O20-2-1-8 296.46 4 240.28 2 18.95
    O20-2-1-9 263.93 4 229.92 2 12.89
    Avg 4.1 2 17.90
    A20-2-1-0 403.54 4 362.31 2 10.22
    A20-2-1-1 494.62 4 444.8 3 10.07
    A20-2-1-2 383.46 5 329.67 2 14.03
    A20-2-1-3 410.31 5 363.62 2 11.38
    A20-2-1-4 386.48 4 343.77 2 11.05
    A20-2-1-5 302.36 4 287.74 2 4.83
    A20-2-1-6 371.57 4 338.23 2 8.97
    A20-2-1-7 333.01 4 290.21 2 12.85
    A20-2-1-8 358.15 4 314.2 2 12.27
    A20-2-1-9 367.36 4 323.6 2 11.91
    Avg 4.2 10.76
     | Show Table
    DownLoad: CSV

    Table 19.  Cost savings for instances with 40 requests

    Instance Non- collaboration Collaboration
    Cost NV Cost NV $\phi$
    I40-2-1-0 1021.39 8 706.64 6 30.82
    I40-2-1-1 861.87 8 600.90 6 30.28
    I40-2-1-2 1006.32 8 729.24 6 27.53
    I40-2-1-3 943.17 8 651.55 6 30.92
    I40-2-1-4 1062.08 8 699.59 6 34.13
    I40-2-1-5 930.23 8 647.36 6 30.41
    I40-2-1-6 874.73 8 590.24 6 32.52
    I40-2-1-7 910.38 8 612.68 6 32.70
    I40-2-1-8 841.23 8 573.59 6 31.82
    I40-2-1-9 843.80 8 598.44 6 29.08
    Avg 8 6 31.02
    O40-2-1-0 650.32 7 494.73 3 23.93
    O40-2-1-1 574.51 7 434.04 3 24.45
    O40-2-1-2 578.02 7 445.80 3 22.87
    O40-2-1-3 692.40 8 523.35 4 24.42
    O40-2-1-4 749.51 7 549.35 4 26.71
    O40-2-1-5 750.72 8 573.11 4 23.66
    O40-2-1-6 636.65 7 492.06 4 22.71
    O40-2-1-7 734.12 7 528.80 3 27.97
    O40-2-1-8 553.40 7 427.55 3 22.74
    O40-2-1-9 746.28 8 578.85 4 22.43
    Avg 7.3 3.5 24.19
    A40-2-1-0 686.52 8 550.2 4 19.86
    A40-2-1-1 730.78 7 597.17 4 18.28
    A40-2-1-2 708.31 8 582.03 4 17.83
    A40-2-1-3 662.45 8 505.21 4 23.74
    A40-2-1-4 667.54 8 567.77 4 14.95
    A40-2-1-5 714.79 7 617.34 4 13.63
    A40-2-1-6 610.43 7 537.91 3 11.88
    A40-2-1-7 639.30 7 542.06 4 15.21
    A40-2-1-8 695.09 7 600.61 4 13.59
    A40-2-1-9 739.69 8 632.33 4 14.51
    Avg 7.5 3.9 16.35
     | Show Table
    DownLoad: CSV

    Table 20.  Cost savings for instances with 60 requests

    Instance Non- collaboration Collaboration
    Cost NV Cost NV $\phi$
    I60-2-1-0 1405.67 11 911.77 6 35.14
    I60-2-1-1 1466.10 10 987.76 7 32.63
    I60-2-1-2 1326.57 12 877.23 6 33.87
    I60-2-1-3 1381.98 12 882.44 6 36.15
    I60-2-1-4 1341.28 11 896.87 5 33.13
    I60-2-1-5 1438.62 11 996.95 7 30.70
    I60-2-1-6 1575.24 13 1043.88 7 33.73
    I60-2-1-7 1384.43 10 944.32 6 31.79
    I60-2-1-8 1245.97 10 818.94 5 34.27
    I60-2-1-9 1266.52 10 865.24 8 31.68
    Avg 11 6.3 33.31
    O60-2-1-0 920.63 8 652.35 5 29.14
    O60-2-1-1 1049.04 11 742.55 4 29.22
    O60-2-1-2 1092.15 11 732.49 5 32.93
    O60-2-1-3 1083.86 11 787.76 5 27.32
    O60-2-1-4 1031.74 11 727.32 5 29.51
    O60-2-1-5 981.97 10 752.74 5 23.34
    O60-2-1-6 956.39 9 680.46 5 28.85
    O60-2-1-7 1052.40 11 752.96 5 28.45
    O60-2-1-8 977.50 9 695.58 5 28.84
    O60-2-1-9 959.39 10 723.61 5 24.58
    Avg 10.1 4.9 4.9 28.22
    A60-2-1-0 1133.63 11 836.54 6 26.21
    A60-2-1-1 1187.66 10 911.33 6 23.27
    A60-2-1-2 956.53 10 703.79 5 26.42
    A60-2-1-3 969.58 10 781.73 5 19.37
    A60-2-1-4 1074.74 10 793.69 5 26.15
    A60-2-1-5 984.88 9 740.28 5 24.84
    A60-2-1-6 999.87 10 754.71 5 24.52
    A60-2-1-7 1061.10 11 780.28 5 26.46
    A60-2-1-8 962.43 11 751.38 5 21.93
    A60-2-1-9 941.98 9 705.99 5 25.05
    Avg 10.1 5.2 5.2 24.42
     | Show Table
    DownLoad: CSV

    Table 21.  Cost savings for instances with 100 requests

    Instance Non- collaboration Collaboration
    Cost NV Cost NV $\phi$
    I100-2-1-0 2741.02 20 1500.16 10 45.27
    I100-2-1-1 2308.06 17 1399.61 10 39.36
    I100-2-1-2 2634.95 19 1481.37 10 43.78
    I100-2-1-3 2517.73 18 1406.15 10 44.15
    I100-2-1-4 2275.46 17 1471.77 9 35.32
    I100-2-1-5 2393.39 17 1465.71 10 38.76
    I100-2-1-6 2635.37 19 1482.92 10 43.73
    I100-2-1-7 2628.76 19 1439.77 10 45.23
    I100-2-1-8 1910.26 15 1277.58 9 33.12
    I100-2-1-9 2337.01 17 1286.29 10 44.96
    Avg 17.8 9.8 41.37
    O100-2-1-0 1791.81 15 1215.92 9 32.14
    O100-2-1-1 1692.20 14 1113.13 8 34.22
    O100-2-1-2 1690.38 14 1066.12 8 36.93
    O100-2-1-3 1803.45 15 1166.47 9 35.32
    O100-2-1-4 1641.55 14 1146.62 9 30.15
    O100-2-1-5 1924.70 15 1223.53 9 36.43
    O100-2-1-6 1606.09 14 1062.43 8 33.85
    O100-2-1-7 1786.01 14 1224.31 9 31.45
    O100-2-1-8 1538.25 13 971.56 7 36.84
    O100-2-1-9 1582.04 13 1098.25 8 30.58
    Avg 14.1 8.4 33.79
    A100-2-1-0 1760.57 14 1212.68 9 31.12
    A100-2-1-1 1809.52 15 1271.73 9 29.72
    A100-2-1-2 1717.81 14 1129.63 8 34.24
    A100-2-1-3 1497.94 10 1162.85 8 22.37
    A100-2-1-4 1611.69 14 1190.23 9 26.15
    A100-2-1-5 1613.52 14 1093.48 8 32.23
    A100-2-1-6 1895.50 15 1208.76 9 36.23
    A100-2-1-7 1764.98 14 1174.24 8 33.47
    A100-2-1-8 1764.23 14 1154.51 9 34.56
    A100-2-1-9 1727.48 14 1217.18 10 29.54
    Avg 13.8 8.7 30.96
     | Show Table
    DownLoad: CSV

    Table 4.  Notations of performance indicators and their description

    Notations Description
    UB The best cost obtained by CPLEX solver in a preset running time.
    LB The lower bound obtained by CPLEX solver in a preset running time
    Ini The cost of the best initial solution obtained by GRASP-ILS
    Zmin The best cost of 10 runs for each meta-heuristic
    Zavg The average cost of 10 runs for each meta-heuristic
    Dev The standard deviation of the costs obtained in ten runs by each meta-heuristic.
    $Imp_{Ini}$ The improvement of best cost over Ini.
    For CPLEX solver $Imp_{Ini}$ is calculated by ${{(UB - Ini)} / {UB}}*100\%$
    For meta-heuristics, $Imp_{Ini}$ is calculated by$ {{({z_{min}} - Ini)} /{{z_{min}}}}*100\%$
    $Gap_{LB}$ The percentage gap between the best cost and LB.
    For CPLEX solver, $Gap_{LB}$ is calculated by $Gap_{LB} = {{(UB - Ini)} /{UB}}*100\%$
    For meta-heuristics, $Gap_{LB}$ is calculated by$ {{({z_{min}} - LB)} /{{z_{min}}}}*100\%$
    $Imp_{Cplex}$ The improvement of the best cost obtained by meta-heuristics over the best cost
    obtained by CPLEX solver.$Imp_{Cplex}$ is calculated as:${{(UB - {z_{min}})} /{UB}}*100\%$
    $Imp_{GRASP-ILS,GRASP}$ The improvement of over. It is calculated as:
    ${{({Z_{min,GRASP}} - {z_{min,GRASP - ILS}})} / {{z_{min,GRASP - ILS}}}}*100\%$
    $Imp_{GRASP-ILS,ILS}$ The improvement of over. It is calculated as:
    ${{({Z_{min,ILS}} - {z_{min,GRASP - ILS}})} / {{z_{min,GRASP - ILS}}}}*100\%$
    NV The average total number of vehicles used in the transportation
    $Cost_{N}$ The total transportation cost of the shippers without collaboration obtained by CPLEX solver.
    $Cost_{C}$ The total transportation cost of the shippers with collaboration, which is the best objective value of CPLEX solver and GRASP-ILS.
    $\phi$ The cost savings in percentage achieved by the collaboration among the shippers. is defined as: ${{({Cost_N} - {Cost_C})} /{{Cost_N}}}*100\%$
    $CPU_{avg}$ The average execution time in seconds for meta-heuristics
     | Show Table
    DownLoad: CSV
  •   C. Archetti  and  M. G. Speranza , Vehicle routing problems with split deliveries, International Transactions in Operational Research, 19 (2012) , 3-22.  doi: 10.1111/j.1475-3995.2011.00811.x.
      J. F. Audy , S. D'Amours  and  L. M. Rousseau , Cost allocation in the establishment of a collaborative transportation agreement-an application in the furniture industry, Journal of the Operational Research Society, 62 (2011) , 960-970. 
      M. Battarra , J. F. Cordeau  and  M. Iori , Pickup-and-delivery problems for goods transportation, Vehicle routing: problems, methods, and applications. MOS/SIAM series on optimization, (2014) , 161-192. 
      R. Bent  and  P. Van Hentenryck , A two-stage hybrid algorithm for pickup and delivery vehicle routing problems with time windows, Computers & Operations Research, 33 (2006) , 875-893. 
      G. Berbeglia , J. F. Cordeau , I. Gribkovskaia  and  G. Laporte , Static pickup and delivery problems: a classification scheme and survey, Top, 15 (2007) , 1-31.  doi: 10.1007/s11750-007-0009-0.
      S. Berger  and  C. Bierwirth , Solutions to the request reassignment problem in collaborative carrier networks, Transportation Research Part E: Logistics and Transportation Review, 46 (2010) , 627-638. 
      N. Bianchessi  and  G. Righini , Heuristic algorithms for the vehicle routing problem with simultaneous pick-up and delivery, Computers & Operations Research, 34 (2007) , 578-594. 
      J. Crispim  and  J. Brandão , Metaheuristics applied to mixed and simultaneous extensions of vehicle routing problems with backhauls, Journal of the Operational Research Society, 34 (2005) , 1296-1302. 
      B. Dai  and  H. Chen , Mathematical model and solution approach for collaborative logistics in less than truckload (LTL) transportation, Computers & Industrial Engineering, 2009. CIE 2009. International Conference on IEEE, (2009) , 767-772. 
      J. Dethloff , Vehicle routing and reverse logistics: The vehicle routing problem with simultaneous delivery and pick-up, Operations Research-Spektrum, 23 (2001) , 79-96.  doi: 10.1007/PL00013346.
      M. Dror  and  P. Trudeau , Savings by split delivery routing, Transportation Science, 23 (1989) , 141-145. 
      O. Ergun , G. Kuyzu  and  M. Savelsbergh , Shipper collaboration, Computers & Operations Research, 34 (2007a) , 1551-1560. 
      O. Ergun , G. Kuyzu  and  M. Savelsbergh , Reducing truckload transportation costs through collaboration, Transportation Science, 41 (2007b) , 206-221. 
      T. A. Feo  and  J. F. Bard , Flight scheduling and maintenance base planning, Management Science, 35 (1989) , 1415-1432. 
      M. Frisk , M. Göthe-Lundgren , K. Jörnsten  and  M. Rönnqvist , Cost allocation in collaborative forest transportation, European Journal of Operational Research, 205 (2010) , 448-458. 
      Y. Gajpal  and  P. Abad , An ant colony system (ACS) for vehicle routing problem with simultaneous delivery and pickup, Computers & Operations Research, 36 (2009) , 3215-3223. 
      F. P. Goksal , I. Karaoglan  and  F. Altiparmak , A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery, Computers & Industrial Engineering, 65 (2013) , 39-53. 
      M. Y. Lai , C. S. Liu  and  X. J. Tong , A two-stage hybrid meta-heuristic for pickup and delivery vehicle routing problem with time windows, Journal of Industrial & Management Optimization, 6 (2010) , 435-451.  doi: 10.3934/jimo.2010.6.435.
      H. Li  and  A. Lim , A metaheuristic for the pickup and delivery problem with time windows, International Journal on Artificial Intelligence Tools, 12 (2003) , 173-186. 
      J. Li , P. M. Pardalos , H. Sun , J. Pei  and  Y. Zhang , Iterated local search embedded adaptive neighborhood selection approach for the multi-depot vehicle routing problem with simultaneous deliveries and pickups, Expert Systems with Applications, 42 (2015) , 3551-3561. 
      R. Liu , X. Xie , V. Augusto  and  C. Rodriguez , Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care, European Journal of Operational Research, 230 (2013) , 475-486.  doi: 10.1016/j.ejor.2013.04.044.
      H. R. Lourenço, O. C. Martin and T. Stützle, Iterated local search, in In Handbook of metaheuristics, Springer US, 57 (2003), 321–353.
      Q. Lu  and  M. M. Dessouky , A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows, European Journal of Operational Research, 175 (2006) , 672-687. 
      H. Min , The multiple vehicle routing problem with simultaneous delivery and pick-up points, Transportation Research Part A: General, 23 (1989) , 377-386. 
      S. Mitra , An algorithm for the generalized vehicle routing problem with backhauling, Asia-Pacific Journal of Operational Research, 22 (2005) , 153-169.  doi: 10.1142/S0217595905000522.
      S. Mitra , A parallel clustering technique for the vehicle routing problem with split deliveries and pickups, Journal of the operational Research Society, 59 (2008) , 1532-1546. 
      G. Nagy  and  S. Salhi , Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries, European Journal of Operational Research, 162 (2005) , 126-141. 
      W. P. Nanry  and  J. W. Barnes , Solving the pickup and delivery problem with time windows using reactive tabu search, Transportation Research Part B: Methodological, 34 (2000) , 107-121. 
      M. Nowak , Ö Ergun  and  C. C. White Ⅲ , Pickup and delivery with split loads, Transportation Science, 42 (2008) , 32-43. 
      M. Nowak , Ö Ergun  and  C. C. White Ⅲ , An empirical study on the benefit of split loads with the pickup and delivery problem, European Journal of Operational Research, 198 (2009) , 734-740. 
      G. Pankratz , A grouping genetic algorithm for the pickup and delivery problem with time windows, Or Spectrum, 27 (2005) , 21-41.  doi: 10.1007/s00291-004-0173-7.
      P. Pelagagge , L. Fratocchi  and  A. C. Caputo , A genetic approach for freight transportation planning, Industrial Management & Data Systems, 106 (2006) , 719-738. 
      D. Pisinger  and  S. Ropke , A general heuristic for vehicle routing problems, Computers & operations research, 34 (2007) , 2403-2435.  doi: 10.1016/j.cor.2005.09.012.
      C. Prins , N. Labadi  and  M. Reghioui , Tour splitting algorithms for vehicle routing problems, International Journal of Production Research, 47 (2009) , 507-535. 
      M. Reghioui , C. Prins  and  N. Labadi , GRASP with path relinking for the capacitated arc routing problem with time windows, InWorkshops on Applications of Evolutionary Computation, (2007) , 722-731. 
      J. Renaud , F. F. Boctor  and  G. Laporte , Perturbation heuristics for the pickup and delivery traveling salesman problem, Computers & Operations Research, 29 (2002) , 1129-1141.  doi: 10.1016/S0305-0548(99)00066-0.
      S. Ropke  and  D. Pisinger , An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows, Transportation Science, 40 (2006a) , 455-472. 
      S. Ropke  and  D. Pisinger , A unified heuristic for a large class of vehicle routing problems with backhauls, European Journal of Operational Research, 171 (2006) , 750-775.  doi: 10.1016/j.ejor.2004.09.004.
      S. Salhi  and  G. Nagy , A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling, Journal of the operational Research Society, 50 (1999) , 1034-1042. 
      R. Sprenger  and  L. Monch , A methodology to solve large-scale cooperative transportation planning problems, European Journal of Operational Research, 223 (2012) , 626-636. 
      A. Subramanian , L. M. Drummond , L. M. D. A., C. Bentes , L. S. Ochi  and  R. Farias , A parallel heuristic for the vehicle routing problem with simultaneous pickup and delivery, Computers & Operations Research, 223 (2010) , 1899-1911. 
      A. Subramanian , E. Uchoa  and  L. S. Ochi , A hybrid algorithm for a class of vehicle routing problems, Computers & Operations Research, 40 (2013) , 2519-2531. 
      A. S. Tasan  and  M. Gen , A genetic algorithm based approach to vehicle routing problem with simultaneous pick-up and deliveries, Computers & Industrial Engineering, 62 (2012) , 755-761. 
      F. L. Usberti , P. M. França  and  A. L. M. França , GRASP with evolutionary path-relinking for the capacitated arc routing problem, Computers & Operations Research, 40 (2013) , 3206-3217.  doi: 10.1016/j.cor.2011.10.014.
      N. A. Wassan , A. H. Wassan  and  G. Nagy , A reactive tabu search algorithm for the vehicle routing problem with simultaneous pickups and deliveries, Journal of Combinatorial Optimization, 15 (2008) , 368-386.  doi: 10.1007/s10878-007-9090-4.
      O. Yilmaz  and  S. Savasaneril , Collaboration among small shippers in a transportation market, European Journal of Operational Research, 218 (2012) , 408-415.  doi: 10.1016/j.ejor.2011.11.018.
      T. Zhang , W. A. Chaovalitwongse  and  Y. Zhang , Integrated ant colony and tabu search approach for time dependent vehicle routing problems with simultaneous pickup and delivery, Journal of Combinatorial Optimization, 28 (2014) , 288-309.  doi: 10.1007/s10878-014-9741-1.
  • 加载中

Figures(5)

Tables(21)

SHARE

Article Metrics

HTML views(3532) PDF downloads(731) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return