March  2020, 16(2): 707-724. doi: 10.3934/jimo.2018174

Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

2. 

College of Computer Science, Chongqing University, Chongqing 400044, China

3. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

4. 

Center for General Education, China Medical University, Taichung 40402, Taiwan

* Corresponding author: Shengjie Li

Received  May 2017 Revised  May 2018 Published  December 2018

Fund Project: This research was supported by the Natural Science Foundation of China (Nos: 11171362, 11401487), the Basic and Advanced Research Project of Chongqing (cstc2016jcyjA0239), the China Postdoctoral Science Foundation (No: 2015M582512), National Scholarship under the Grant of China Scholarship Council, the Fundamental Research Funds for the Central Universities(XDJK2019C073) and the grant MOST 106-2923-E-039-001-MY3

In this paper, we consider a class of constrained vector optimization problems by using image space analysis. A class of vector-valued separation functions and a $ \mathfrak{C} $-solution notion are proposed for the constrained vector optimization problems, respectively. Moreover, existence of a saddle point for the vector-valued separation function is characterized by the (regular) separation of two suitable subsets of the image space. By employing the separation function, we introduce a class of generalized vector-valued Lagrangian functions without involving any elements of the feasible set of constrained vector optimization problems. The relationships between the type-Ⅰ(Ⅱ) saddle points of the generalized Lagrangian functions and that of the function corresponding to the separation function are also established. Finally, optimality conditions for $ \mathfrak{C} $-solutions of constrained vector optimization problems are derived by the saddle-point conditions.

Citation: Jiawei Chen, Shengjie Li, Jen-Chih Yao. Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points. Journal of Industrial & Management Optimization, 2020, 16 (2) : 707-724. doi: 10.3934/jimo.2018174
References:
[1]

J. W. Chen, Q. H. Ansari, Y. C. Liou and J. C. Yao, A proximal point algorithm based on decomposition method for cone constrained multiobjective optimization problems, Comput. Optim. Appl., 65 (2016), 289-308. doi: 10.1007/s10589-016-9840-2.  Google Scholar

[2]

J. W. ChenY. J. ChoJ. K. Kim and J. Li, Multiobjective optimization problems with modified objective functions and cone constraints and applications, J. Glob. Optim., 49 (2011), 137-147.  doi: 10.1007/s10898-010-9539-3.  Google Scholar

[3]

J. ChenL. Huang and S. J. Li, Separations and optimality of constrained multiobjective optimization via improvement sets, J. Optim. Theory Appl., 178 (2018), 794-823.  doi: 10.1007/s10957-018-1325-2.  Google Scholar

[4]

J. W. ChenS. J. LiZ. Wan and J. C. Yao, Vector variational-like inequalities with constraints: Separation and alternative, J. Optim. Theory Appl., 166 (2015), 460-479.  doi: 10.1007/s10957-015-0736-6.  Google Scholar

[5]

B. D. Craven, Control and Optimization, Chapman & Hall, 1995. doi: 10.1007/978-1-4899-7226-2.  Google Scholar

[6]

B. D. Craven and X. Q. Yang, A nonsmooth version of alterative theorem and nonsmooth multiobjective programming, Utilitas Math., 40 (1991), 117-128.   Google Scholar

[7]

F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities. Image space analysis and separation,, In: Giannessi, F.(ed.) Vector Variational Inequalities and Vector Equilibria, Kluwer Academic, Dordrech/Boston/London, 38 (2000), 153-215. doi: 10.1007/978-1-4613-0299-5_11.  Google Scholar

[8]

F. Giannessi, On the theory of Lagrangian duality, Optim. Lett., 1 (2007), 9-20.  doi: 10.1007/s11590-006-0013-6.  Google Scholar

[9]

F. Giannessi and G. Mastroeni, Separation of sets and Wolfe duality, J. Glob. Optim., 42 (2008), 401-412.  doi: 10.1007/s10898-008-9301-2.  Google Scholar

[10]

F. Giannessi and G. Mastroeni, Separation of sets and Wolfe duality, J. Glob. Optim., 44 (2009), 459-460.  doi: 10.1007/s10898-009-9406-2.  Google Scholar

[11]

F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In: R.W. Cottle, F. Giannessi and J.L. Lions (ed.), Variational Inequalities and Complementarity Problems, 151-186, Wiley, New York, (1980).  Google Scholar

[12]

F. Giannessi, Semidifferentiable functions and necessary optimality conditions, J. Optim. Theory Appl., 60 (1989), 191-241.  doi: 10.1007/BF00940005.  Google Scholar

[13]

F. Giannessi, Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, Vol. 1., Springer, Berlin, 2005.  Google Scholar

[14]

F. Giannessi, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 60 (1984), 331-365. doi: 10.1007/BF00935321.  Google Scholar

[15]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publishers, Dordrecht, Holland, 2000. doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[16]

F. Giannessi, G. Mastroeni and J. C. Yao, On maximum and variational principles via image space analysis, Positivity, 16 (2012), 405-427. doi: 10.1007/s11117-012-0160-1.  Google Scholar

[17]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in Partially Ordered Spaces, Springer, New York/Berlin, 2003.  Google Scholar

[18]

S. M. Guu and J. Li, Vector quasi-equilibrium problems: Separation, saddle points and error bounds for the solution set, J. Glob. Optim., 58 (2014), 751-767.  doi: 10.1007/s10898-013-0073-y.  Google Scholar

[19]

J. Jahn, Vector Optimization Theory, Applications and Extensions, Springer, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[20]

J. Li and N. J. Huang, Image space analysis for variational inequalites with cone constraints and applications to traffic equilibria, Sci. China Math., 55 (2012), 851-868.  doi: 10.1007/s11425-011-4287-5.  Google Scholar

[21]

S. J. LiY. D. Xu and S. K. Zhu, Nonlinear separation approach to constrained extremum problems, J. Optim. Theory Appl., 154 (2012), 842-856.  doi: 10.1007/s10957-012-0027-4.  Google Scholar

[22]

J. Li and N. J. Huang, Image space analysis for vector variational inequalites with matrix inequality constraints and applications, J. Optim. Theory Appl., 145 (2010), 459-477.  doi: 10.1007/s10957-010-9691-4.  Google Scholar

[23]

D. T. Luc, Theory of Vector Vptimization, Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, 1989.  Google Scholar

[24]

G. Mastroeni and L. Pellegrini, On the image space analysis for vector variational inequalities, J. Ind. Manag. Optim., 1 (2005), 123-132.  doi: 10.3934/jimo.2005.1.123.  Google Scholar

[25]

G. MastroeniB. PanicucciM. Passacantando and J. C. Yao, A separation approach to vector quasiequilibrium problems: Saddle point and gap function, Taiwanese J. Math., 13 (2009), 657-673.  doi: 10.11650/twjm/1500405393.  Google Scholar

[26]

G. Mastroeni, Nonlinear separation in the image space with applications to penalty methods, Appl. Anal., 91 (2012), 1901-1914.  doi: 10.1080/00036811.2011.614603.  Google Scholar

[27]

Q. Wang and S. J. Li, Semicontinuity of approximate solution mappings to generalized vector equilibrium problems, J. Indust. Manag. Optim., 12 (2016), 1303-1309.  doi: 10.3934/jimo.2016.12.1303.  Google Scholar

[28]

H. X. WuH. Z. Luo and J. F. Yang, Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming, J. Glob. Optim., 59 (2014), 695-727.  doi: 10.1007/s10898-013-0093-7.  Google Scholar

[29]

Y. D. Xu and S. J. Li, Nonlinear separation functions and constrained extremum problems, Optim. Lett., 8 (2014), 1149-1160.  doi: 10.1007/s11590-013-0644-3.  Google Scholar

[30]

Y. D. Xu, Nonlinear separation functions, optimality conditions and error bounds for Ky Fan quasi-inequalities, Optim. Lett., 10 (2016), 527-542.  doi: 10.1007/s11590-015-0879-2.  Google Scholar

[31]

Y. D. Xu and S. J. Li, Gap functions and error bounds for weak vector variational inequalities, Optim., 63 (2014), 1339-1352.  doi: 10.1080/02331934.2012.721115.  Google Scholar

[32]

K. Q. Zhao and X. M. Yang, Characterizations of efficient and weakly efficient points in nonconvex vector optimization, J. Glob. Optim., 61 (2015), 575-590.  doi: 10.1007/s10898-014-0191-1.  Google Scholar

[33]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅰ: Image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.  doi: 10.1007/s10957-013-0468-4.  Google Scholar

[34]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅱ: Special duality schemes, J. Optim. Theory Appl., 161 (2014), 763-782.  doi: 10.1007/s10957-013-0467-5.  Google Scholar

show all references

References:
[1]

J. W. Chen, Q. H. Ansari, Y. C. Liou and J. C. Yao, A proximal point algorithm based on decomposition method for cone constrained multiobjective optimization problems, Comput. Optim. Appl., 65 (2016), 289-308. doi: 10.1007/s10589-016-9840-2.  Google Scholar

[2]

J. W. ChenY. J. ChoJ. K. Kim and J. Li, Multiobjective optimization problems with modified objective functions and cone constraints and applications, J. Glob. Optim., 49 (2011), 137-147.  doi: 10.1007/s10898-010-9539-3.  Google Scholar

[3]

J. ChenL. Huang and S. J. Li, Separations and optimality of constrained multiobjective optimization via improvement sets, J. Optim. Theory Appl., 178 (2018), 794-823.  doi: 10.1007/s10957-018-1325-2.  Google Scholar

[4]

J. W. ChenS. J. LiZ. Wan and J. C. Yao, Vector variational-like inequalities with constraints: Separation and alternative, J. Optim. Theory Appl., 166 (2015), 460-479.  doi: 10.1007/s10957-015-0736-6.  Google Scholar

[5]

B. D. Craven, Control and Optimization, Chapman & Hall, 1995. doi: 10.1007/978-1-4899-7226-2.  Google Scholar

[6]

B. D. Craven and X. Q. Yang, A nonsmooth version of alterative theorem and nonsmooth multiobjective programming, Utilitas Math., 40 (1991), 117-128.   Google Scholar

[7]

F. Giannessi, G. Mastroeni and L. Pellegrini, On the theory of vector optimization and variational inequalities. Image space analysis and separation,, In: Giannessi, F.(ed.) Vector Variational Inequalities and Vector Equilibria, Kluwer Academic, Dordrech/Boston/London, 38 (2000), 153-215. doi: 10.1007/978-1-4613-0299-5_11.  Google Scholar

[8]

F. Giannessi, On the theory of Lagrangian duality, Optim. Lett., 1 (2007), 9-20.  doi: 10.1007/s11590-006-0013-6.  Google Scholar

[9]

F. Giannessi and G. Mastroeni, Separation of sets and Wolfe duality, J. Glob. Optim., 42 (2008), 401-412.  doi: 10.1007/s10898-008-9301-2.  Google Scholar

[10]

F. Giannessi and G. Mastroeni, Separation of sets and Wolfe duality, J. Glob. Optim., 44 (2009), 459-460.  doi: 10.1007/s10898-009-9406-2.  Google Scholar

[11]

F. Giannessi, Theorems of alternative, quadratic programs and complementarity problems, In: R.W. Cottle, F. Giannessi and J.L. Lions (ed.), Variational Inequalities and Complementarity Problems, 151-186, Wiley, New York, (1980).  Google Scholar

[12]

F. Giannessi, Semidifferentiable functions and necessary optimality conditions, J. Optim. Theory Appl., 60 (1989), 191-241.  doi: 10.1007/BF00940005.  Google Scholar

[13]

F. Giannessi, Constrained Optimization and Image Space Analysis, Separation of Sets and Optimality Conditions, Vol. 1., Springer, Berlin, 2005.  Google Scholar

[14]

F. Giannessi, Theorems of the alternative and optimality conditions, J. Optim. Theory Appl., 60 (1984), 331-365. doi: 10.1007/BF00935321.  Google Scholar

[15]

F. Giannessi, Vector Variational Inequalities and Vector Equilibria, Kluwer Academic Publishers, Dordrecht, Holland, 2000. doi: 10.1007/978-1-4613-0299-5.  Google Scholar

[16]

F. Giannessi, G. Mastroeni and J. C. Yao, On maximum and variational principles via image space analysis, Positivity, 16 (2012), 405-427. doi: 10.1007/s11117-012-0160-1.  Google Scholar

[17]

A. Göpfert, H. Riahi, C. Tammer and C. Zălinescu, Variational Methods in Partially Ordered Spaces, Springer, New York/Berlin, 2003.  Google Scholar

[18]

S. M. Guu and J. Li, Vector quasi-equilibrium problems: Separation, saddle points and error bounds for the solution set, J. Glob. Optim., 58 (2014), 751-767.  doi: 10.1007/s10898-013-0073-y.  Google Scholar

[19]

J. Jahn, Vector Optimization Theory, Applications and Extensions, Springer, Berlin, 2004. doi: 10.1007/978-3-540-24828-6.  Google Scholar

[20]

J. Li and N. J. Huang, Image space analysis for variational inequalites with cone constraints and applications to traffic equilibria, Sci. China Math., 55 (2012), 851-868.  doi: 10.1007/s11425-011-4287-5.  Google Scholar

[21]

S. J. LiY. D. Xu and S. K. Zhu, Nonlinear separation approach to constrained extremum problems, J. Optim. Theory Appl., 154 (2012), 842-856.  doi: 10.1007/s10957-012-0027-4.  Google Scholar

[22]

J. Li and N. J. Huang, Image space analysis for vector variational inequalites with matrix inequality constraints and applications, J. Optim. Theory Appl., 145 (2010), 459-477.  doi: 10.1007/s10957-010-9691-4.  Google Scholar

[23]

D. T. Luc, Theory of Vector Vptimization, Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, 1989.  Google Scholar

[24]

G. Mastroeni and L. Pellegrini, On the image space analysis for vector variational inequalities, J. Ind. Manag. Optim., 1 (2005), 123-132.  doi: 10.3934/jimo.2005.1.123.  Google Scholar

[25]

G. MastroeniB. PanicucciM. Passacantando and J. C. Yao, A separation approach to vector quasiequilibrium problems: Saddle point and gap function, Taiwanese J. Math., 13 (2009), 657-673.  doi: 10.11650/twjm/1500405393.  Google Scholar

[26]

G. Mastroeni, Nonlinear separation in the image space with applications to penalty methods, Appl. Anal., 91 (2012), 1901-1914.  doi: 10.1080/00036811.2011.614603.  Google Scholar

[27]

Q. Wang and S. J. Li, Semicontinuity of approximate solution mappings to generalized vector equilibrium problems, J. Indust. Manag. Optim., 12 (2016), 1303-1309.  doi: 10.3934/jimo.2016.12.1303.  Google Scholar

[28]

H. X. WuH. Z. Luo and J. F. Yang, Nonlinear separation approach for the augmented Lagrangian in nonlinear semidefinite programming, J. Glob. Optim., 59 (2014), 695-727.  doi: 10.1007/s10898-013-0093-7.  Google Scholar

[29]

Y. D. Xu and S. J. Li, Nonlinear separation functions and constrained extremum problems, Optim. Lett., 8 (2014), 1149-1160.  doi: 10.1007/s11590-013-0644-3.  Google Scholar

[30]

Y. D. Xu, Nonlinear separation functions, optimality conditions and error bounds for Ky Fan quasi-inequalities, Optim. Lett., 10 (2016), 527-542.  doi: 10.1007/s11590-015-0879-2.  Google Scholar

[31]

Y. D. Xu and S. J. Li, Gap functions and error bounds for weak vector variational inequalities, Optim., 63 (2014), 1339-1352.  doi: 10.1080/02331934.2012.721115.  Google Scholar

[32]

K. Q. Zhao and X. M. Yang, Characterizations of efficient and weakly efficient points in nonconvex vector optimization, J. Glob. Optim., 61 (2015), 575-590.  doi: 10.1007/s10898-014-0191-1.  Google Scholar

[33]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅰ: Image space analysis, J. Optim. Theory Appl., 161 (2014), 738-762.  doi: 10.1007/s10957-013-0468-4.  Google Scholar

[34]

S. K. Zhu and S. J. Li, Unified duality theory for constrained extremum problems. Part Ⅱ: Special duality schemes, J. Optim. Theory Appl., 161 (2014), 763-782.  doi: 10.1007/s10957-013-0467-5.  Google Scholar

[1]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[2]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[3]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[4]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[5]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[6]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[7]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[8]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[9]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[10]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[11]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[12]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[13]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[17]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[18]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[19]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[20]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (163)
  • HTML views (860)
  • Cited by (1)

Other articles
by authors

[Back to Top]