March  2020, 16(2): 725-739. doi: 10.3934/jimo.2018175

Optimal pricing and inventory strategies for introducing a new product based on demand substitution effects

1. 

Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA

2. 

School of Management and Engineering, Nanjing University, Nanjing, China 210093

3. 

Amazon, Seattle, WA 98109, USA

* Corresponding author: Jingquan Li

Received  July 2017 Revised  August 2018 Published  December 2018

This paper studies a single-period inventory-pricing problem with two substitutable products, which is very important in the area of Operations Management but has received little attention. The proposed problem focuses on determining the optimal price of the existing product and the inventory level of the new product. Inspired by practice, the problem considers various pricing strategies for the existing product as well as the cross elasticity of demand between existing and new products. A mathematical model has been developed for different pricing strategies to maximize the expected profit. It has been proven that the objective function is concave and there exists the unique optimal solution. Different sets of computational examples are conducted to show that the optimal pricing and inventory strategy generated by the model can increase profits.

Citation: Zhijie Sasha Dong, Wei Chen, Qing Zhao, Jingquan Li. Optimal pricing and inventory strategies for introducing a new product based on demand substitution effects. Journal of Industrial & Management Optimization, 2020, 16 (2) : 725-739. doi: 10.3934/jimo.2018175
References:
[1]

M. AkanB. Ata and R. C. Savaskan-Ebert, Dynamic pricing of remanufacturable products under demand substitution: a product life cycle model, Annals of Operations Research, 211 (2013), 1-25.  doi: 10.1007/s10479-013-1409-1.  Google Scholar

[2]

G. Aydin and E. L. Porteus, Joint inventory and pricing decisions for an assortment, Operations Research, 56 (2008), 1247-1255.  doi: 10.1287/opre.1080.0562.  Google Scholar

[3]

D. HonhonV. Gaur and S. Seshadri, Assortment planning and inventory decisions under stockout-based substitution, Operations Research, 58 (2010), 1364-1379.  doi: 10.1287/opre.1090.0805.  Google Scholar

[4]

C. C. Hsieh and C. H. Wu, Coordinated decisions for substitutable products in a common retailer supply chain, European Journal of Operational Research, 196 (2009), 273-288.  doi: 10.1016/j.ejor.2008.02.019.  Google Scholar

[5]

M. Karakul, Joint pricing and procurement of fashion products in the existence of clearance markets, International Journal of Production Economics, 114 (2008), 487-506.  doi: 10.1016/j.ijpe.2007.03.026.  Google Scholar

[6]

M. Karakul and L. M. A. Chan, Analytical and managerial implications of integrating product substitutability in the joint pricing and procurement problem, European Journal of Operational Research, 190 (2008), 179-204.  doi: 10.1016/j.ejor.2007.06.026.  Google Scholar

[7]

M. Karakul and L. M. A. Chan, Joint pricing and procurement of substitutable products with random demands - A technical note, European Journal of Operational Research, 201 (2010), 324-328.  doi: 10.1016/j.ejor.2009.03.030.  Google Scholar

[8]

M. KhoujaA. Mehrez and G. Rabinowitz, A two-item newsboy problem with substitutability, International Journal of Production Economics, 44 (1996), 267-275.  doi: 10.1016/0925-5273(96)80002-V.  Google Scholar

[9]

Y. Lan, Z. Liu and B. Niu, Pricing and design of after-sales service contract: The value of mining asymmetric sales cost information, Asia-Pacific Journal of Operational Research, 34 (2017), 1740002. doi: 10.1142/S0217595917400024.  Google Scholar

[10]

Y. LanR. Zhao and W. Tang, A fuzzy supply chain contract problem with pricing and warranty, Fuzzy Systems, 26 (2014), 1527-1538.  doi: 10.3233/IFS-130836.  Google Scholar

[11]

X. LiG. Sun and Y. Li, A multi-period ordering and clearance pricing model considering the competition between new and out-of-season products, Annals of Operations Research, 242 (2016), 207-221.  doi: 10.1007/s10479-013-1498-x.  Google Scholar

[12]

S. MouD. J. Robb and N. DeHoratius, Retail store operations: Literature review and research directions, European Journal of Operational Research, 265 (2018), 399-422.  doi: 10.1016/j.ejor.2017.07.003.  Google Scholar

[13]

M. Nagarajan and S. Rajagopalan, Inventory models for substitutable products: Optimal policies and heuristics, Management Science, 54 (2008), 1453-1466.  doi: 10.1287/mnsc.1080.0871.  Google Scholar

[14]

X. A. Pan and D. Honhon, Assortment planning for vertically differentiated products, Production and Operations Management, 21 (2012), 253-275.  doi: 10.1111/j.1937-5956.2011.01259.x.  Google Scholar

[15]

A. Sainathan, Pricing and replenishment of competing perishable product variants under dynamic demand substitution, Production and Operations Management, 22 (2013), 1157-1181.  doi: 10.1111/poms.12004.  Google Scholar

[16]

Z. SazvarS. M. J. Mirzapour Al-e-hashemK. Govindan and B. Bahli, A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system, Transportation Research Part E: Logistics and Transportation Review, 93 (2016), 232-261.  doi: 10.1016/j.tre.2016.04.011.  Google Scholar

[17]

H. ShinS. ParkE. Lee and W. C. Benton, A classification of the literature on the planning of substitutable products, European Journal of Operational Research, 246 (2015), 686-699.  doi: 10.1016/j.ejor.2015.04.013.  Google Scholar

show all references

References:
[1]

M. AkanB. Ata and R. C. Savaskan-Ebert, Dynamic pricing of remanufacturable products under demand substitution: a product life cycle model, Annals of Operations Research, 211 (2013), 1-25.  doi: 10.1007/s10479-013-1409-1.  Google Scholar

[2]

G. Aydin and E. L. Porteus, Joint inventory and pricing decisions for an assortment, Operations Research, 56 (2008), 1247-1255.  doi: 10.1287/opre.1080.0562.  Google Scholar

[3]

D. HonhonV. Gaur and S. Seshadri, Assortment planning and inventory decisions under stockout-based substitution, Operations Research, 58 (2010), 1364-1379.  doi: 10.1287/opre.1090.0805.  Google Scholar

[4]

C. C. Hsieh and C. H. Wu, Coordinated decisions for substitutable products in a common retailer supply chain, European Journal of Operational Research, 196 (2009), 273-288.  doi: 10.1016/j.ejor.2008.02.019.  Google Scholar

[5]

M. Karakul, Joint pricing and procurement of fashion products in the existence of clearance markets, International Journal of Production Economics, 114 (2008), 487-506.  doi: 10.1016/j.ijpe.2007.03.026.  Google Scholar

[6]

M. Karakul and L. M. A. Chan, Analytical and managerial implications of integrating product substitutability in the joint pricing and procurement problem, European Journal of Operational Research, 190 (2008), 179-204.  doi: 10.1016/j.ejor.2007.06.026.  Google Scholar

[7]

M. Karakul and L. M. A. Chan, Joint pricing and procurement of substitutable products with random demands - A technical note, European Journal of Operational Research, 201 (2010), 324-328.  doi: 10.1016/j.ejor.2009.03.030.  Google Scholar

[8]

M. KhoujaA. Mehrez and G. Rabinowitz, A two-item newsboy problem with substitutability, International Journal of Production Economics, 44 (1996), 267-275.  doi: 10.1016/0925-5273(96)80002-V.  Google Scholar

[9]

Y. Lan, Z. Liu and B. Niu, Pricing and design of after-sales service contract: The value of mining asymmetric sales cost information, Asia-Pacific Journal of Operational Research, 34 (2017), 1740002. doi: 10.1142/S0217595917400024.  Google Scholar

[10]

Y. LanR. Zhao and W. Tang, A fuzzy supply chain contract problem with pricing and warranty, Fuzzy Systems, 26 (2014), 1527-1538.  doi: 10.3233/IFS-130836.  Google Scholar

[11]

X. LiG. Sun and Y. Li, A multi-period ordering and clearance pricing model considering the competition between new and out-of-season products, Annals of Operations Research, 242 (2016), 207-221.  doi: 10.1007/s10479-013-1498-x.  Google Scholar

[12]

S. MouD. J. Robb and N. DeHoratius, Retail store operations: Literature review and research directions, European Journal of Operational Research, 265 (2018), 399-422.  doi: 10.1016/j.ejor.2017.07.003.  Google Scholar

[13]

M. Nagarajan and S. Rajagopalan, Inventory models for substitutable products: Optimal policies and heuristics, Management Science, 54 (2008), 1453-1466.  doi: 10.1287/mnsc.1080.0871.  Google Scholar

[14]

X. A. Pan and D. Honhon, Assortment planning for vertically differentiated products, Production and Operations Management, 21 (2012), 253-275.  doi: 10.1111/j.1937-5956.2011.01259.x.  Google Scholar

[15]

A. Sainathan, Pricing and replenishment of competing perishable product variants under dynamic demand substitution, Production and Operations Management, 22 (2013), 1157-1181.  doi: 10.1111/poms.12004.  Google Scholar

[16]

Z. SazvarS. M. J. Mirzapour Al-e-hashemK. Govindan and B. Bahli, A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system, Transportation Research Part E: Logistics and Transportation Review, 93 (2016), 232-261.  doi: 10.1016/j.tre.2016.04.011.  Google Scholar

[17]

H. ShinS. ParkE. Lee and W. C. Benton, A classification of the literature on the planning of substitutable products, European Journal of Operational Research, 246 (2015), 686-699.  doi: 10.1016/j.ejor.2015.04.013.  Google Scholar

Figure 1.  Effect of the extant product's price on the new product's order quantity
Figure 2.  Effect of the extant product's price on the expected profit
Table 1.  Effect of the inventory level of the existing product on the retailer's optimal policy and the expected profit
Strategy Variables Values
$ Q_1 $ 160 170 180 190 200 210 220 230 240 250
Unchanged $ Q_2 $ 840 830 820 810 800 800 800 800 800 800
$ s_1 (\$)$ 12 12 12 12 12 12 12 12 12 12
$ EP (\$)$ 5280 5360 5440 5520 5600 5600 5600 5600 5600 5600
$ RP (\$)$ 100.0 100.0 100.0 100.0 100.0 101.0 102.0 103.0 104.0 105.0
Decreased $ Q_2 $ 840 830 820 810 800 790 780 770 760 746.6
$ s_1 (\$)$ 12 12 12 12 12 11.7 11.4 11.1 10.8 10.5
$ EP (\$)$ 5280 5360 5440 5520 5600 5617 5628 5633 5632 5611.4
$ RP (\$)$ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7
Strategy Variables Values
$ Q_1 $ 160 170 180 190 200 210 220 230 240 250
Unchanged $ Q_2 $ 840 830 820 810 800 800 800 800 800 800
$ s_1 (\$)$ 12 12 12 12 12 12 12 12 12 12
$ EP (\$)$ 5280 5360 5440 5520 5600 5600 5600 5600 5600 5600
$ RP (\$)$ 100.0 100.0 100.0 100.0 100.0 101.0 102.0 103.0 104.0 105.0
Decreased $ Q_2 $ 840 830 820 810 800 790 780 770 760 746.6
$ s_1 (\$)$ 12 12 12 12 12 11.7 11.4 11.1 10.8 10.5
$ EP (\$)$ 5280 5360 5440 5520 5600 5617 5628 5633 5632 5611.4
$ RP (\$)$ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7
Table 2.  Effect of the salvage value of the existing product on the retailer's optimal policy and the expected profit
Strategy Variables Values
$ h_1 $ -5 -4 -3 -2 -1 0 1 2 3 4
Unchanged $ Q_2 $ 800 800 800 800 800 800 800 800 800 800
$ s_1 (\$)$ 12 12 12 12 12 12 12 12 12 12
$ EP (\$)$ 5350 5400 5450 5500 5550 5600 5650 5700 5750 5800
$ RP (\$)$ 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0
Decreased $ Q_2 $ 750 750 750 750 750 750 750 750 750 750
$ s_1 (\$)$ 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
$ EP (\$)$ 5625 5625 5625 5625 5625 5625 5625 5625 5625 5625
$ RP (\$)$ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Strategy Variables Values
$ h_1 $ -5 -4 -3 -2 -1 0 1 2 3 4
Unchanged $ Q_2 $ 800 800 800 800 800 800 800 800 800 800
$ s_1 (\$)$ 12 12 12 12 12 12 12 12 12 12
$ EP (\$)$ 5350 5400 5450 5500 5550 5600 5650 5700 5750 5800
$ RP (\$)$ 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0 105.0
Decreased $ Q_2 $ 750 750 750 750 750 750 750 750 750 750
$ s_1 (\$)$ 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
$ EP (\$)$ 5625 5625 5625 5625 5625 5625 5625 5625 5625 5625
$ RP (\$)$ 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
[1]

Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021002

[2]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[3]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[4]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[5]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[6]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[7]

Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021013

[8]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[9]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[10]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[11]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[12]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[13]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[14]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[16]

Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045

[17]

Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021012

[18]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[19]

Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021015

[20]

Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021016

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (330)
  • HTML views (1068)
  • Cited by (0)

Other articles
by authors

[Back to Top]