
-
Previous Article
Risk-balanced territory design optimization for a Micro finance institution
- JIMO Home
- This Issue
-
Next Article
Vector-valued separation functions and constrained vector optimization problems: optimality and saddle points
Optimal pricing and inventory strategies for introducing a new product based on demand substitution effects
1. | Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA |
2. | School of Management and Engineering, Nanjing University, Nanjing, China 210093 |
3. | Amazon, Seattle, WA 98109, USA |
This paper studies a single-period inventory-pricing problem with two substitutable products, which is very important in the area of Operations Management but has received little attention. The proposed problem focuses on determining the optimal price of the existing product and the inventory level of the new product. Inspired by practice, the problem considers various pricing strategies for the existing product as well as the cross elasticity of demand between existing and new products. A mathematical model has been developed for different pricing strategies to maximize the expected profit. It has been proven that the objective function is concave and there exists the unique optimal solution. Different sets of computational examples are conducted to show that the optimal pricing and inventory strategy generated by the model can increase profits.
References:
[1] |
M. Akan, B. Ata and R. C. Savaskan-Ebert,
Dynamic pricing of remanufacturable products under demand substitution: a product life cycle model, Annals of Operations Research, 211 (2013), 1-25.
doi: 10.1007/s10479-013-1409-1. |
[2] |
G. Aydin and E. L. Porteus,
Joint inventory and pricing decisions for an assortment, Operations Research, 56 (2008), 1247-1255.
doi: 10.1287/opre.1080.0562. |
[3] |
D. Honhon, V. Gaur and S. Seshadri,
Assortment planning and inventory decisions under stockout-based substitution, Operations Research, 58 (2010), 1364-1379.
doi: 10.1287/opre.1090.0805. |
[4] |
C. C. Hsieh and C. H. Wu,
Coordinated decisions for substitutable products in a common retailer supply chain, European Journal of Operational Research, 196 (2009), 273-288.
doi: 10.1016/j.ejor.2008.02.019. |
[5] |
M. Karakul,
Joint pricing and procurement of fashion products in the existence of clearance markets, International Journal of Production Economics, 114 (2008), 487-506.
doi: 10.1016/j.ijpe.2007.03.026. |
[6] |
M. Karakul and L. M. A. Chan,
Analytical and managerial implications of integrating product substitutability in the joint pricing and procurement problem, European Journal of Operational Research, 190 (2008), 179-204.
doi: 10.1016/j.ejor.2007.06.026. |
[7] |
M. Karakul and L. M. A. Chan,
Joint pricing and procurement of substitutable products with random demands - A technical note, European Journal of Operational Research, 201 (2010), 324-328.
doi: 10.1016/j.ejor.2009.03.030. |
[8] |
M. Khouja, A. Mehrez and G. Rabinowitz,
A two-item newsboy problem with substitutability, International Journal of Production Economics, 44 (1996), 267-275.
doi: 10.1016/0925-5273(96)80002-V. |
[9] |
Y. Lan, Z. Liu and B. Niu, Pricing and design of after-sales service contract: The value of mining asymmetric sales cost information, Asia-Pacific Journal of Operational Research, 34 (2017), 1740002.
doi: 10.1142/S0217595917400024. |
[10] |
Y. Lan, R. Zhao and W. Tang,
A fuzzy supply chain contract problem with pricing and warranty, Fuzzy Systems, 26 (2014), 1527-1538.
doi: 10.3233/IFS-130836. |
[11] |
X. Li, G. Sun and Y. Li,
A multi-period ordering and clearance pricing model considering the competition between new and out-of-season products, Annals of Operations Research, 242 (2016), 207-221.
doi: 10.1007/s10479-013-1498-x. |
[12] |
S. Mou, D. J. Robb and N. DeHoratius,
Retail store operations: Literature review and research directions, European Journal of Operational Research, 265 (2018), 399-422.
doi: 10.1016/j.ejor.2017.07.003. |
[13] |
M. Nagarajan and S. Rajagopalan,
Inventory models for substitutable products: Optimal policies and heuristics, Management Science, 54 (2008), 1453-1466.
doi: 10.1287/mnsc.1080.0871. |
[14] |
X. A. Pan and D. Honhon,
Assortment planning for vertically differentiated products, Production and Operations Management, 21 (2012), 253-275.
doi: 10.1111/j.1937-5956.2011.01259.x. |
[15] |
A. Sainathan,
Pricing and replenishment of competing perishable product variants under dynamic demand substitution, Production and Operations Management, 22 (2013), 1157-1181.
doi: 10.1111/poms.12004. |
[16] |
Z. Sazvar, S. M. J. Mirzapour Al-e-hashem, K. Govindan and B. Bahli,
A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system, Transportation Research Part E: Logistics and Transportation Review, 93 (2016), 232-261.
doi: 10.1016/j.tre.2016.04.011. |
[17] |
H. Shin, S. Park, E. Lee and W. C. Benton,
A classification of the literature on the planning of substitutable products, European Journal of Operational Research, 246 (2015), 686-699.
doi: 10.1016/j.ejor.2015.04.013. |
show all references
References:
[1] |
M. Akan, B. Ata and R. C. Savaskan-Ebert,
Dynamic pricing of remanufacturable products under demand substitution: a product life cycle model, Annals of Operations Research, 211 (2013), 1-25.
doi: 10.1007/s10479-013-1409-1. |
[2] |
G. Aydin and E. L. Porteus,
Joint inventory and pricing decisions for an assortment, Operations Research, 56 (2008), 1247-1255.
doi: 10.1287/opre.1080.0562. |
[3] |
D. Honhon, V. Gaur and S. Seshadri,
Assortment planning and inventory decisions under stockout-based substitution, Operations Research, 58 (2010), 1364-1379.
doi: 10.1287/opre.1090.0805. |
[4] |
C. C. Hsieh and C. H. Wu,
Coordinated decisions for substitutable products in a common retailer supply chain, European Journal of Operational Research, 196 (2009), 273-288.
doi: 10.1016/j.ejor.2008.02.019. |
[5] |
M. Karakul,
Joint pricing and procurement of fashion products in the existence of clearance markets, International Journal of Production Economics, 114 (2008), 487-506.
doi: 10.1016/j.ijpe.2007.03.026. |
[6] |
M. Karakul and L. M. A. Chan,
Analytical and managerial implications of integrating product substitutability in the joint pricing and procurement problem, European Journal of Operational Research, 190 (2008), 179-204.
doi: 10.1016/j.ejor.2007.06.026. |
[7] |
M. Karakul and L. M. A. Chan,
Joint pricing and procurement of substitutable products with random demands - A technical note, European Journal of Operational Research, 201 (2010), 324-328.
doi: 10.1016/j.ejor.2009.03.030. |
[8] |
M. Khouja, A. Mehrez and G. Rabinowitz,
A two-item newsboy problem with substitutability, International Journal of Production Economics, 44 (1996), 267-275.
doi: 10.1016/0925-5273(96)80002-V. |
[9] |
Y. Lan, Z. Liu and B. Niu, Pricing and design of after-sales service contract: The value of mining asymmetric sales cost information, Asia-Pacific Journal of Operational Research, 34 (2017), 1740002.
doi: 10.1142/S0217595917400024. |
[10] |
Y. Lan, R. Zhao and W. Tang,
A fuzzy supply chain contract problem with pricing and warranty, Fuzzy Systems, 26 (2014), 1527-1538.
doi: 10.3233/IFS-130836. |
[11] |
X. Li, G. Sun and Y. Li,
A multi-period ordering and clearance pricing model considering the competition between new and out-of-season products, Annals of Operations Research, 242 (2016), 207-221.
doi: 10.1007/s10479-013-1498-x. |
[12] |
S. Mou, D. J. Robb and N. DeHoratius,
Retail store operations: Literature review and research directions, European Journal of Operational Research, 265 (2018), 399-422.
doi: 10.1016/j.ejor.2017.07.003. |
[13] |
M. Nagarajan and S. Rajagopalan,
Inventory models for substitutable products: Optimal policies and heuristics, Management Science, 54 (2008), 1453-1466.
doi: 10.1287/mnsc.1080.0871. |
[14] |
X. A. Pan and D. Honhon,
Assortment planning for vertically differentiated products, Production and Operations Management, 21 (2012), 253-275.
doi: 10.1111/j.1937-5956.2011.01259.x. |
[15] |
A. Sainathan,
Pricing and replenishment of competing perishable product variants under dynamic demand substitution, Production and Operations Management, 22 (2013), 1157-1181.
doi: 10.1111/poms.12004. |
[16] |
Z. Sazvar, S. M. J. Mirzapour Al-e-hashem, K. Govindan and B. Bahli,
A novel mathematical model for a multi-period, multi-product optimal ordering problem considering expiry dates in a FEFO system, Transportation Research Part E: Logistics and Transportation Review, 93 (2016), 232-261.
doi: 10.1016/j.tre.2016.04.011. |
[17] |
H. Shin, S. Park, E. Lee and W. C. Benton,
A classification of the literature on the planning of substitutable products, European Journal of Operational Research, 246 (2015), 686-699.
doi: 10.1016/j.ejor.2015.04.013. |


Strategy | Variables | Values | |||||||||
160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 | ||
Unchanged | 840 | 830 | 820 | 810 | 800 | 800 | 800 | 800 | 800 | 800 | |
12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | ||
5280 | 5360 | 5440 | 5520 | 5600 | 5600 | 5600 | 5600 | 5600 | 5600 | ||
100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 101.0 | 102.0 | 103.0 | 104.0 | 105.0 | ||
Decreased | 840 | 830 | 820 | 810 | 800 | 790 | 780 | 770 | 760 | 746.6 | |
12 | 12 | 12 | 12 | 12 | 11.7 | 11.4 | 11.1 | 10.8 | 10.5 | ||
5280 | 5360 | 5440 | 5520 | 5600 | 5617 | 5628 | 5633 | 5632 | 5611.4 | ||
100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.7 |
Strategy | Variables | Values | |||||||||
160 | 170 | 180 | 190 | 200 | 210 | 220 | 230 | 240 | 250 | ||
Unchanged | 840 | 830 | 820 | 810 | 800 | 800 | 800 | 800 | 800 | 800 | |
12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | ||
5280 | 5360 | 5440 | 5520 | 5600 | 5600 | 5600 | 5600 | 5600 | 5600 | ||
100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 101.0 | 102.0 | 103.0 | 104.0 | 105.0 | ||
Decreased | 840 | 830 | 820 | 810 | 800 | 790 | 780 | 770 | 760 | 746.6 | |
12 | 12 | 12 | 12 | 12 | 11.7 | 11.4 | 11.1 | 10.8 | 10.5 | ||
5280 | 5360 | 5440 | 5520 | 5600 | 5617 | 5628 | 5633 | 5632 | 5611.4 | ||
100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.7 |
Strategy | Variables | Values | |||||||||
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | ||
Unchanged | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | |
12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | ||
5350 | 5400 | 5450 | 5500 | 5550 | 5600 | 5650 | 5700 | 5750 | 5800 | ||
105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | ||
Decreased | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | |
10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | ||
5625 | 5625 | 5625 | 5625 | 5625 | 5625 | 5625 | 5625 | 5625 | 5625 | ||
100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Strategy | Variables | Values | |||||||||
-5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | ||
Unchanged | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | 800 | |
12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | ||
5350 | 5400 | 5450 | 5500 | 5550 | 5600 | 5650 | 5700 | 5750 | 5800 | ||
105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | 105.0 | ||
Decreased | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | |
10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | 10.5 | ||
5625 | 5625 | 5625 | 5625 | 5625 | 5625 | 5625 | 5625 | 5625 | 5625 | ||
100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
[1] |
Ömer Arslan, Selçuk Kürşat İşleyen. A model and two heuristic methods for The Multi-Product Inventory-Location-Routing Problem with heterogeneous fleet. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021002 |
[2] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[3] |
Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020181 |
[4] |
Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021004 |
[5] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[6] |
Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017 |
[7] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[8] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
[9] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[10] |
San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038 |
[11] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[12] |
Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004 |
[13] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[14] |
Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020054 |
[15] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273 |
[16] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[17] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[18] |
M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014 |
[19] |
Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021015 |
[20] |
Bingyan Liu, Xiongbing Ye, Xianzhou Dong, Lei Ni. Branching improved Deep Q Networks for solving pursuit-evasion strategy solution of spacecraft. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021016 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]