
-
Previous Article
Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization
- JIMO Home
- This Issue
-
Next Article
An executive model for network-level pavement maintenance and rehabilitation planning based on linear integer programming
Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks
1. | School of Economics and Commence, Guangdong University of Technology, Guangzhou 510520, China |
2. | Centre for Actuarial Studies, Department of Economics, The University of Melbourne, VIC 3010, Australia |
This paper investigates a continuous-time Markowitz mean-variance asset-liability management (ALM) problem under stochastic interest rates and inflation risks. We assume that the company can invest in $n + 1$ assets: one risk-free bond and $n$ risky stocks. The risky stock's price is governed by a geometric Brownian motion (GBM), and the uncontrollable liability follows a Brownian motion with drift, respectively. The correlation between the risky assets and the liability is considered. The objective is to minimize the risk (measured by variance) of the terminal wealth subject to a given expected terminal wealth level. By applying the Lagrange multiplier method and stochastic control approach, we derive the associated Hamilton-Jacobi-Bellman (HJB) equation, which can be converted into six partial differential equations (PDEs). The closed-form solutions for these six PDEs are derived by using the homogenization approach and the variable transformation technique. Then the closed-form expressions for the efficient strategy and efficient frontier are obtained. In addition, a numerical example is presented to illustrate the results.
References:
[1] |
A. Bensoussan, J. Keppo and S. P. Sethi,
Optimal consumption and portfolio decisions with partially observed real prices, Mathematical Finance, 19 (2009), 215-236.
doi: 10.1111/j.1467-9965.2009.00362.x. |
[2] |
M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, Journal of Finance, 57 (2002), 1201-1238. Google Scholar |
[3] |
U. Celikyurt and S. Özekici, Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach, European Journal of Operational Research, 179 (2007), 186-202. Google Scholar |
[4] |
H. Chang, Dynamic mean-variance portfolio selection with liability and stochastic interest rate, Economic Modelling, 51 (2015), 172-182. Google Scholar |
[5] |
P. Chen, H. Yang and G. Yin,
Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.
doi: 10.1016/j.insmatheco.2008.09.001. |
[6] |
M. C. Chiu and D. Li,
Asset and liability management under a continuous-time mean-variance optimization framework, Insurance: Mathematics and Economics, 39 (2006), 330-355.
doi: 10.1016/j.insmatheco.2006.03.006. |
[7] |
M. C. Chiu and H. Y. Wong,
Mean-variance asset-liability management with asset correlation risk and insurance liabilities, Insurance: Mathematics and Economics, 59 (2014), 300-310.
doi: 10.1016/j.insmatheco.2014.10.003. |
[8] |
O. L. Costa and M. V. Araujo,
A generalized multi-period mean-variance portfolio optimization with markov switching parameters, Automatica, 44 (2008), 2487-2497.
doi: 10.1016/j.automatica.2008.02.014. |
[9] |
X. Cui, J. Gao, X. Li and D. Li,
Optimal multi-period mean-variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040. |
[10] |
W. H. Fleming and H. M. Soner,
Controlled Markov Processes and Viscosity Solutions, Springer Science & Business Media, New York, 2006. |
[11] |
D. Giamouridis and A. Sakkas, Dynamic asset allocation with liabilities, European Financial Management, 23 (2017), 254-291. Google Scholar |
[12] |
R. P. Hoevenaars, R. D. Molenaar, P. C. Schotman and T. B. Steenkamp,
Strategic asset allocation with liabilities: Beyond stocks and bonds, Journal of Economic Dynamics and Control, 32 (2008), 2939-2970.
doi: 10.1016/j.jedc.2007.11.003. |
[13] |
J. Hull and A. White, Pricing interest-rate-derivative securities, Review of Financial Studies, 3 (1990), 573-592. Google Scholar |
[14] |
H. K. Koo, Consumption and portfolio selection with labor income: A continuous time approach, Mathematical Finance, 81 (1998), 49-56. Google Scholar |
[15] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[16] |
A. E. Lim and X. Y. Zhou,
Mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120.
doi: 10.1287/moor.27.1.101.337. |
[17] |
S. Lv, Z. Wu and Z. Yu,
Continuous-time mean-variance portfolio selection with random horizon in an incomplete market, Automatica, 69 (2016), 176-180.
doi: 10.1016/j.automatica.2016.02.017. |
[18] |
H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. Google Scholar |
[19] |
C. Munk, C. Sorensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates and inflation uncertainty, International Review of Economics and Finance, 13 (2004), 141-166. Google Scholar |
[20] |
J. Pan and Q. Xiao,
Optimal asset-liability management with liquidity constraints and stochastic interest rates in the expected utility framework, Journal of Computational and Applied Mathematics, 317 (2017), 371-387.
doi: 10.1016/j.cam.2016.11.037. |
[21] |
J. Pan and Q. Xiao,
Optimal mean-variance asset-liability management with stochastic interest rates and inflation risks, Mathematical Methods of Operations Research, 85 (2017), 491-519.
doi: 10.1007/s00186-017-0580-6. |
[22] |
Y. Shen,
Mean-variance portfolio selection in a complete market with unbounded random coefficients, Automatica, 55 (2015), 165-175.
doi: 10.1016/j.automatica.2015.03.009. |
[23] |
T. K. Siu,
Long-term strategic asset allocation with infation risk and regime switching, Quantitative Finance, 11 (2011), 1565-1580.
doi: 10.1080/14697680903055588. |
[24] |
J. Wang and P. A. Forsyth,
Continuous time mean variance asset allocation: A time-consistent strategy, European Journal of Operational Research, 209 (2011), 184-201.
doi: 10.1016/j.ejor.2010.09.038. |
[25] |
S. Xie, Z. Li and S. Wang,
Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach, Insurance: Mathematics and Economics, 42 (2008), 943-953.
doi: 10.1016/j.insmatheco.2007.10.014. |
[26] |
S. Xie,
Continuous-time mean-variance portfolio selection with liability and regime switching, Insurance: Mathematics and Economics, 45 (2009), 148-155.
doi: 10.1016/j.insmatheco.2009.05.005. |
[27] |
H. Yao, Z. Yang and P. Chen,
Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.
doi: 10.1016/j.insmatheco.2013.10.002. |
[28] |
H. Yao, Z. Li and Y. Lai,
Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate, Journal of Industrial and Management Optimization, 12 (2016), 187-209.
doi: 10.3934/jimo.2016.12.187. |
[29] |
J. Yu, Optimal asset-liability management for an insurer under markov regime switching jump-diffusion market, Asia-Pacific Financial Markets, 21 (2014), 317-330. Google Scholar |
[30] |
A. Zhang, Stochastic Optimization in Finance and Life Insurance: Applications of the Martingale Method, Ph.D thesis, University of Kaiserslautern in Kaiserslautern, 2008. Google Scholar |
[31] |
X. Y. Zhou and D. Li,
Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003. |
[32] |
X. Y. Zhou and G. Yin,
Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.
doi: 10.1137/S0363012902405583. |
show all references
References:
[1] |
A. Bensoussan, J. Keppo and S. P. Sethi,
Optimal consumption and portfolio decisions with partially observed real prices, Mathematical Finance, 19 (2009), 215-236.
doi: 10.1111/j.1467-9965.2009.00362.x. |
[2] |
M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation, Journal of Finance, 57 (2002), 1201-1238. Google Scholar |
[3] |
U. Celikyurt and S. Özekici, Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach, European Journal of Operational Research, 179 (2007), 186-202. Google Scholar |
[4] |
H. Chang, Dynamic mean-variance portfolio selection with liability and stochastic interest rate, Economic Modelling, 51 (2015), 172-182. Google Scholar |
[5] |
P. Chen, H. Yang and G. Yin,
Markowitz's mean-variance asset-liability management with regime switching: A continuous-time model, Insurance: Mathematics and Economics, 43 (2008), 456-465.
doi: 10.1016/j.insmatheco.2008.09.001. |
[6] |
M. C. Chiu and D. Li,
Asset and liability management under a continuous-time mean-variance optimization framework, Insurance: Mathematics and Economics, 39 (2006), 330-355.
doi: 10.1016/j.insmatheco.2006.03.006. |
[7] |
M. C. Chiu and H. Y. Wong,
Mean-variance asset-liability management with asset correlation risk and insurance liabilities, Insurance: Mathematics and Economics, 59 (2014), 300-310.
doi: 10.1016/j.insmatheco.2014.10.003. |
[8] |
O. L. Costa and M. V. Araujo,
A generalized multi-period mean-variance portfolio optimization with markov switching parameters, Automatica, 44 (2008), 2487-2497.
doi: 10.1016/j.automatica.2008.02.014. |
[9] |
X. Cui, J. Gao, X. Li and D. Li,
Optimal multi-period mean-variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040. |
[10] |
W. H. Fleming and H. M. Soner,
Controlled Markov Processes and Viscosity Solutions, Springer Science & Business Media, New York, 2006. |
[11] |
D. Giamouridis and A. Sakkas, Dynamic asset allocation with liabilities, European Financial Management, 23 (2017), 254-291. Google Scholar |
[12] |
R. P. Hoevenaars, R. D. Molenaar, P. C. Schotman and T. B. Steenkamp,
Strategic asset allocation with liabilities: Beyond stocks and bonds, Journal of Economic Dynamics and Control, 32 (2008), 2939-2970.
doi: 10.1016/j.jedc.2007.11.003. |
[13] |
J. Hull and A. White, Pricing interest-rate-derivative securities, Review of Financial Studies, 3 (1990), 573-592. Google Scholar |
[14] |
H. K. Koo, Consumption and portfolio selection with labor income: A continuous time approach, Mathematical Finance, 81 (1998), 49-56. Google Scholar |
[15] |
D. Li and W. L. Ng,
Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical Finance, 10 (2000), 387-406.
doi: 10.1111/1467-9965.00100. |
[16] |
A. E. Lim and X. Y. Zhou,
Mean-variance portfolio selection with random parameters in a complete market, Mathematics of Operations Research, 27 (2002), 101-120.
doi: 10.1287/moor.27.1.101.337. |
[17] |
S. Lv, Z. Wu and Z. Yu,
Continuous-time mean-variance portfolio selection with random horizon in an incomplete market, Automatica, 69 (2016), 176-180.
doi: 10.1016/j.automatica.2016.02.017. |
[18] |
H. Markowitz, Portfolio selection, Journal of Finance, 7 (1952), 77-91. Google Scholar |
[19] |
C. Munk, C. Sorensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates and inflation uncertainty, International Review of Economics and Finance, 13 (2004), 141-166. Google Scholar |
[20] |
J. Pan and Q. Xiao,
Optimal asset-liability management with liquidity constraints and stochastic interest rates in the expected utility framework, Journal of Computational and Applied Mathematics, 317 (2017), 371-387.
doi: 10.1016/j.cam.2016.11.037. |
[21] |
J. Pan and Q. Xiao,
Optimal mean-variance asset-liability management with stochastic interest rates and inflation risks, Mathematical Methods of Operations Research, 85 (2017), 491-519.
doi: 10.1007/s00186-017-0580-6. |
[22] |
Y. Shen,
Mean-variance portfolio selection in a complete market with unbounded random coefficients, Automatica, 55 (2015), 165-175.
doi: 10.1016/j.automatica.2015.03.009. |
[23] |
T. K. Siu,
Long-term strategic asset allocation with infation risk and regime switching, Quantitative Finance, 11 (2011), 1565-1580.
doi: 10.1080/14697680903055588. |
[24] |
J. Wang and P. A. Forsyth,
Continuous time mean variance asset allocation: A time-consistent strategy, European Journal of Operational Research, 209 (2011), 184-201.
doi: 10.1016/j.ejor.2010.09.038. |
[25] |
S. Xie, Z. Li and S. Wang,
Continuous-time portfolio selection with liability: Mean-variance model and stochastic LQ approach, Insurance: Mathematics and Economics, 42 (2008), 943-953.
doi: 10.1016/j.insmatheco.2007.10.014. |
[26] |
S. Xie,
Continuous-time mean-variance portfolio selection with liability and regime switching, Insurance: Mathematics and Economics, 45 (2009), 148-155.
doi: 10.1016/j.insmatheco.2009.05.005. |
[27] |
H. Yao, Z. Yang and P. Chen,
Markowitz's mean-variance defined contribution pension fund management under inflation: A continuous-time model, Insurance: Mathematics and Economics, 53 (2013), 851-863.
doi: 10.1016/j.insmatheco.2013.10.002. |
[28] |
H. Yao, Z. Li and Y. Lai,
Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate, Journal of Industrial and Management Optimization, 12 (2016), 187-209.
doi: 10.3934/jimo.2016.12.187. |
[29] |
J. Yu, Optimal asset-liability management for an insurer under markov regime switching jump-diffusion market, Asia-Pacific Financial Markets, 21 (2014), 317-330. Google Scholar |
[30] |
A. Zhang, Stochastic Optimization in Finance and Life Insurance: Applications of the Martingale Method, Ph.D thesis, University of Kaiserslautern in Kaiserslautern, 2008. Google Scholar |
[31] |
X. Y. Zhou and D. Li,
Continuous-time mean-variance portfolio selection: A stochastic LQ framework, Applied Mathematics and Optimization, 42 (2000), 19-33.
doi: 10.1007/s002450010003. |
[32] |
X. Y. Zhou and G. Yin,
Markowitz's mean-variance portfolio selection with regime switching: A continuous-time model, SIAM Journal on Control and Optimization, 42 (2003), 1466-1482.
doi: 10.1137/S0363012902405583. |






[1] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[2] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[3] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[4] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[5] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[6] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[7] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[8] |
Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020353 |
[9] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[10] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[11] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[12] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[13] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[14] |
Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002 |
[15] |
Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304 |
[16] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[17] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[18] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[19] |
Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020 doi: 10.3934/fods.2020018 |
[20] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]