doi: 10.3934/jimo.2018186

A new class of positive semi-definite tensors

1. 

Mathematics Department, Southeast University, 2 Sipailou, Nanjing, Jiangsu Province 210096, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China

* Corresponding author: Jinjie Liu

Received  March 2018 Revised  September 2018 Published  December 2018

Fund Project: The first author is supported by National Natural Science Foundation of China Nos. 11501100, 11571178 and 11671082. The third author is supported in part by the Hong Kong Research Grant Council Nos. PolyU 15302114, 15300715, 15301716 and 15300717

In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential MO tensor. They are proved to be positive definite tensors. Especially, the smallest H-eigenvalue of a Sup-MO tensor is positive and tends to zero as the dimension tends to infinity, and an essential MO tensor is also a completely positive tensor.

Citation: Yi Xu, Jinjie Liu, Liqun Qi. A new class of positive semi-definite tensors. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2018186
References:
[1]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. doi: 10.1007/978-1-4612-1394-9. Google Scholar

[2]

H. ChenG. Li and L. Qi, SOS tensor decomposition: Theory and applications, Commun. Math. Sci., 14 (2016), 2073-2100. doi: 10.4310/CMS.2016.v14.n8.a1. Google Scholar

[3]

A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation, Wiley, New York, 2009. doi: 10.1002/9780470747278. Google Scholar

[4]

D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350. doi: 10.1007/BF01443605. Google Scholar

[5]

C. J. Hillar and L. H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), Art. 45, 39 pp. doi: 10.1145/2512329. Google Scholar

[6]

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500. doi: 10.1137/07070111X. Google Scholar

[7]

C. LiF. WangJ. ZhaoY. Zhu and Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Applied. Math., 255 (2014), 1-14. doi: 10.1016/j.cam.2013.04.022. Google Scholar

[8]

Z. Luo and L. Qi, Positive semidefinite tensors (in Chinese), Sci. Sin. Math., 46 (2016), 639-654. Google Scholar

[9]

Z. Luo and L. Qi, Completely positive tensors: Properties, easily checkable subclasses and tractable relaxations, SIAM J. Matrix Anal. Appl., 37 (2016), 1675-1698. doi: 10.1137/15M1025220. Google Scholar

[10]

J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, CRC Press, 1990. Google Scholar

[11]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007. Google Scholar

[12]

L. Qi, H$^+$-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12 (2014), 1045-1064. doi: 10.4310/CMS.2014.v12.n6.a3. Google Scholar

[13]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017. doi: 10.1137/1.9781611974751. Google Scholar

[14]

L. Qi and Y. Song, An even order symmetric B tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312. doi: 10.1016/j.laa.2014.05.026. Google Scholar

[15]

L. QiC. Xu and Y. Xu, Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm, SIAM J Marix Anal. Appl., 35 (2014), 1227-1241. doi: 10.1137/13092232X. Google Scholar

[16]

L. QiG. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J Imaging Sci., 3 (2010), 416-433. doi: 10.1137/090755138. Google Scholar

[17]

L. ZhangL. Qi and G. Zhou, $M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452. doi: 10.1137/130915339. Google Scholar

show all references

References:
[1]

J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000. doi: 10.1007/978-1-4612-1394-9. Google Scholar

[2]

H. ChenG. Li and L. Qi, SOS tensor decomposition: Theory and applications, Commun. Math. Sci., 14 (2016), 2073-2100. doi: 10.4310/CMS.2016.v14.n8.a1. Google Scholar

[3]

A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation, Wiley, New York, 2009. doi: 10.1002/9780470747278. Google Scholar

[4]

D. Hilbert, Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350. doi: 10.1007/BF01443605. Google Scholar

[5]

C. J. Hillar and L. H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), Art. 45, 39 pp. doi: 10.1145/2512329. Google Scholar

[6]

T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500. doi: 10.1137/07070111X. Google Scholar

[7]

C. LiF. WangJ. ZhaoY. Zhu and Y. Li, Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Applied. Math., 255 (2014), 1-14. doi: 10.1016/j.cam.2013.04.022. Google Scholar

[8]

Z. Luo and L. Qi, Positive semidefinite tensors (in Chinese), Sci. Sin. Math., 46 (2016), 639-654. Google Scholar

[9]

Z. Luo and L. Qi, Completely positive tensors: Properties, easily checkable subclasses and tractable relaxations, SIAM J. Matrix Anal. Appl., 37 (2016), 1675-1698. doi: 10.1137/15M1025220. Google Scholar

[10]

J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, CRC Press, 1990. Google Scholar

[11]

L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324. doi: 10.1016/j.jsc.2005.05.007. Google Scholar

[12]

L. Qi, H$^+$-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12 (2014), 1045-1064. doi: 10.4310/CMS.2014.v12.n6.a3. Google Scholar

[13]

L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017. doi: 10.1137/1.9781611974751. Google Scholar

[14]

L. Qi and Y. Song, An even order symmetric B tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312. doi: 10.1016/j.laa.2014.05.026. Google Scholar

[15]

L. QiC. Xu and Y. Xu, Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm, SIAM J Marix Anal. Appl., 35 (2014), 1227-1241. doi: 10.1137/13092232X. Google Scholar

[16]

L. QiG. Yu and E. X. Wu, Higher order positive semidefinite diffusion tensor imaging, SIAM J Imaging Sci., 3 (2010), 416-433. doi: 10.1137/090755138. Google Scholar

[17]

L. ZhangL. Qi and G. Zhou, $M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452. doi: 10.1137/130915339. Google Scholar

[1]

Yiju Wang, Guanglu Zhou, Louis Caccetta. Nonsingular $H$-tensor and its criteria. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1173-1186. doi: 10.3934/jimo.2016.12.1173

[2]

Jan Boman, Vladimir Sharafutdinov. Stability estimates in tensor tomography. Inverse Problems & Imaging, 2018, 12 (5) : 1245-1262. doi: 10.3934/ipi.2018052

[3]

Mengmeng Zheng, Ying Zhang, Zheng-Hai Huang. Global error bounds for the tensor complementarity problem with a P-tensor. Journal of Industrial & Management Optimization, 2019, 15 (2) : 933-946. doi: 10.3934/jimo.2018078

[4]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[5]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[6]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[7]

François Monard. Efficient tensor tomography in fan-beam coordinates. Inverse Problems & Imaging, 2016, 10 (2) : 433-459. doi: 10.3934/ipi.2016007

[8]

Kaili Zhang, Haibin Chen, Pengfei Zhao. A potential reduction method for tensor complementarity problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 429-443. doi: 10.3934/jimo.2018049

[9]

Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115

[10]

François Monard. Efficient tensor tomography in fan-beam coordinates. Ⅱ: Attenuated transforms. Inverse Problems & Imaging, 2018, 12 (2) : 433-460. doi: 10.3934/ipi.2018019

[11]

Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial & Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271

[12]

Yangyang Xu, Ruru Hao, Wotao Yin, Zhixun Su. Parallel matrix factorization for low-rank tensor completion. Inverse Problems & Imaging, 2015, 9 (2) : 601-624. doi: 10.3934/ipi.2015.9.601

[13]

Michael K. Ng, Chi-Pan Tam, Fan Wang. Multi-view foreground segmentation via fourth order tensor learning. Inverse Problems & Imaging, 2013, 7 (3) : 885-906. doi: 10.3934/ipi.2013.7.885

[14]

Michael Anderson, Atsushi Katsuda, Yaroslav Kurylev, Matti Lassas and Michael Taylor. Metric tensor estimates, geometric convergence, and inverse boundary problems. Electronic Research Announcements, 2003, 9: 69-79.

[15]

Chen Ling, Liqun Qi. Some results on $l^k$-eigenvalues of tensor and related spectral radius. Numerical Algebra, Control & Optimization, 2011, 1 (3) : 381-388. doi: 10.3934/naco.2011.1.381

[16]

H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549

[17]

Jop Briët, Assaf Naor, Oded Regev. Locally decodable codes and the failure of cotype for projective tensor products. Electronic Research Announcements, 2012, 19: 120-130. doi: 10.3934/era.2012.19.120

[18]

Grégory Faye, Pascal Chossat. A spatialized model of visual texture perception using the structure tensor formalism. Networks & Heterogeneous Media, 2013, 8 (1) : 211-260. doi: 10.3934/nhm.2013.8.211

[19]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[20]

Xiaoyu Zheng, Peter Palffy-Muhoray. One order parameter tensor mean field theory for biaxial liquid crystals. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 475-490. doi: 10.3934/dcdsb.2011.15.475

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (35)
  • HTML views (442)
  • Cited by (0)

Other articles
by authors

[Back to Top]