-
Previous Article
Convergence analysis of a new iterative algorithm for solving split variational inclusion problems
- JIMO Home
- This Issue
-
Next Article
Extension of generalized solidarity values to interval-valued cooperative games
A new class of positive semi-definite tensors
1. | Mathematics Department, Southeast University, 2 Sipailou, Nanjing, Jiangsu Province 210096, China |
2. | Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China |
In this paper, a new class of positive semi-definite tensors, the MO tensor, is introduced. It is inspired by the structure of Moler matrix, a class of test matrices. Then we focus on two special cases in the MO-tensors: Sup-MO tensor and essential MO tensor. They are proved to be positive definite tensors. Especially, the smallest H-eigenvalue of a Sup-MO tensor is positive and tends to zero as the dimension tends to infinity, and an essential MO tensor is also a completely positive tensor.
References:
[1] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[2] |
H. Chen, G. Li and L. Qi,
SOS tensor decomposition: Theory and applications, Commun. Math. Sci., 14 (2016), 2073-2100.
doi: 10.4310/CMS.2016.v14.n8.a1. |
[3] |
A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation, Wiley, New York, 2009.
doi: 10.1002/9780470747278. |
[4] |
D. Hilbert,
Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350.
doi: 10.1007/BF01443605. |
[5] |
C. J. Hillar and L. H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), Art. 45, 39 pp.
doi: 10.1145/2512329. |
[6] |
T. G. Kolda and B. W. Bader,
Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500.
doi: 10.1137/07070111X. |
[7] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li,
Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Applied. Math., 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022. |
[8] |
Z. Luo and L. Qi, Positive semidefinite tensors (in Chinese), Sci. Sin. Math., 46 (2016), 639-654. Google Scholar |
[9] |
Z. Luo and L. Qi,
Completely positive tensors: Properties, easily checkable subclasses and tractable relaxations, SIAM J. Matrix Anal. Appl., 37 (2016), 1675-1698.
doi: 10.1137/15M1025220. |
[10] |
J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, CRC Press, 1990. |
[11] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[12] |
L. Qi,
H$^+$-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12 (2014), 1045-1064.
doi: 10.4310/CMS.2014.v12.n6.a3. |
[13] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017.
doi: 10.1137/1.9781611974751. |
[14] |
L. Qi and Y. Song,
An even order symmetric B tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312.
doi: 10.1016/j.laa.2014.05.026. |
[15] |
L. Qi, C. Xu and Y. Xu,
Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm, SIAM J Marix Anal. Appl., 35 (2014), 1227-1241.
doi: 10.1137/13092232X. |
[16] |
L. Qi, G. Yu and E. X. Wu,
Higher order positive semidefinite diffusion tensor imaging, SIAM J Imaging Sci., 3 (2010), 416-433.
doi: 10.1137/090755138. |
[17] |
L. Zhang, L. Qi and G. Zhou,
$M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339. |
show all references
References:
[1] |
J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer, New York, 2000.
doi: 10.1007/978-1-4612-1394-9. |
[2] |
H. Chen, G. Li and L. Qi,
SOS tensor decomposition: Theory and applications, Commun. Math. Sci., 14 (2016), 2073-2100.
doi: 10.4310/CMS.2016.v14.n8.a1. |
[3] |
A. Cichocki, R. Zdunek, A. H. Phan and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multiway Data Analysis and Blind Source Separation, Wiley, New York, 2009.
doi: 10.1002/9780470747278. |
[4] |
D. Hilbert,
Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32 (1888), 342-350.
doi: 10.1007/BF01443605. |
[5] |
C. J. Hillar and L. H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), Art. 45, 39 pp.
doi: 10.1145/2512329. |
[6] |
T. G. Kolda and B. W. Bader,
Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500.
doi: 10.1137/07070111X. |
[7] |
C. Li, F. Wang, J. Zhao, Y. Zhu and Y. Li,
Criterions for the positive definiteness of real supersymmetric tensors, J. Comput. Applied. Math., 255 (2014), 1-14.
doi: 10.1016/j.cam.2013.04.022. |
[8] |
Z. Luo and L. Qi, Positive semidefinite tensors (in Chinese), Sci. Sin. Math., 46 (2016), 639-654. Google Scholar |
[9] |
Z. Luo and L. Qi,
Completely positive tensors: Properties, easily checkable subclasses and tractable relaxations, SIAM J. Matrix Anal. Appl., 37 (2016), 1675-1698.
doi: 10.1137/15M1025220. |
[10] |
J. C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, CRC Press, 1990. |
[11] |
L. Qi,
Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput., 40 (2005), 1302-1324.
doi: 10.1016/j.jsc.2005.05.007. |
[12] |
L. Qi,
H$^+$-eigenvalues of Laplacian and signless Laplacian tensors, Commun. Math. Sci., 12 (2014), 1045-1064.
doi: 10.4310/CMS.2014.v12.n6.a3. |
[13] |
L. Qi and Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, Philadelphia, 2017.
doi: 10.1137/1.9781611974751. |
[14] |
L. Qi and Y. Song,
An even order symmetric B tensor is positive definite, Linear Algebra Appl., 457 (2014), 303-312.
doi: 10.1016/j.laa.2014.05.026. |
[15] |
L. Qi, C. Xu and Y. Xu,
Nonnegative tensor factorization, completely positive tensors, and a hierarchical elimination algorithm, SIAM J Marix Anal. Appl., 35 (2014), 1227-1241.
doi: 10.1137/13092232X. |
[16] |
L. Qi, G. Yu and E. X. Wu,
Higher order positive semidefinite diffusion tensor imaging, SIAM J Imaging Sci., 3 (2010), 416-433.
doi: 10.1137/090755138. |
[17] |
L. Zhang, L. Qi and G. Zhou,
$M$-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
doi: 10.1137/130915339. |
[1] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[2] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[3] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[4] |
Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054 |
[5] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[6] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[7] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[8] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[9] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[10] |
Yan'e Wang, Nana Tian, Hua Nie. Positive solution branches of two-species competition model in open advective environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021006 |
[11] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[12] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[13] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[14] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[15] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[16] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[17] |
Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105 |
[18] |
Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170 |
[19] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[20] |
Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]