
-
Previous Article
A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems
- JIMO Home
- This Issue
-
Next Article
Convergence analysis of a new iterative algorithm for solving split variational inclusion problems
An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming
1. | School of Software, Liaoning Technique University, Huludao, Liaoning, 125105, China |
2. | School of information engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China |
3. | Quanzhou institute of equipment manufacturing haixi institutes, Chinese Academy of Sciences, Quanzhou, Fujian, 362124, China |
An optimal preventive maintenance strategy for multi-state systems based on an integral equation and dynamic programming is described herein. Unlike traditional preventive maintenance strategies, this maintenance strategy is formulated using an integral equation, which can capture the system dynamics and avoid the curse of dimensionality arising from complex semi-Markov processes. The linear integral equation of the system is constructed based on the system kernel. A numerical technique is applied to solve this integral equation and obtain all of the mean elapsed times from each reliable state to each unreliable state. An analytical approach to the optimal preventive maintenance strategy is proposed that maximizes the expected operational time of the system subject to the total maintenance budget based on dynamic programming in which both backward and forward search techniques are used to search for the local optimal solution. Finally, numerical examples concerning two different scales of systems are presented to demonstrate the performance of the strategy in terms of accuracy and efficiency. Moreover a sensitivity analysis is provided to evaluate the robustness of the proposed strategy.
References:
[1] |
Z. Cheng, Z. Yang and B. Guo, Optimal opportunistic maintenance model of multi-unit systems, Journal of Systems Engineering and Electronics, 24 (2013), 811-817. Google Scholar |
[2] |
A. H. Christer and N. Jack,
An integral-equation approach for replacement modelling over finite time horizons, IMA Journal of Mathematics Applied in Business and Industry, 3 (1991), 31-44.
|
[3] |
M. Compare, F. Martini and E. Zio, Genetic algorithms for condition-based maintenance optimization under uncertainty, European Journal of Operational Research, 244 (2015), 611-623. Google Scholar |
[4] |
M. Compare and E. Zio, Genetic algorithms in the framework of dempster-shafer theory of evidence for maintenance optimization problems, IEEE Transactions on Reliability, 64 (2015), 645-660. Google Scholar |
[5] |
A. Csenki, An integral equation approach to the interval reliability of systems modelled by finite semi-Markov processes, Reliability Engineering and System Safety, 47 (1995), 37-45. Google Scholar |
[6] |
L. Cui, H. Li and J. Li,
Markov repairable systems with history-dependent up and down states, Stochastic Models, 23 (2007), 665-681.
doi: 10.1080/15326340701645983. |
[7] |
V. Dominguez,
High-order collocation and quadrature methods for some logarithmic kernel integral equations on open arcs, Journal of Computational and Applied Mathematics, 161 (2003), 145-159.
doi: 10.1016/S0377-0427(03)00583-1. |
[8] |
J. Driessen, H. Peng and G. van Houtum, Maintenance optimization under non-constant probabilities of imperfect inspections, Reliability Engineering and System Safety, 165 (2017), 115-123. Google Scholar |
[9] |
E. El-Neweihi and F. Proschan,
Degradable systems:a survey of multistate system theory, Communications in Statistics, 13 (1984), 405-432.
doi: 10.1080/03610928408828694. |
[10] |
S. Eryilmaz, Modeling dependence between two multi-state components via copulas, IEEE Transactions on Reliability, 63 (2014), 715-720. Google Scholar |
[11] |
M. Gu, X. Lu, J. Gu and Y. Zhang,
Single-machine scheduling problems with machine aging effect and an optional maintenance activity, Applied Mathematical Modelling, 40 (2016), 8862-8871.
doi: 10.1016/j.apm.2016.01.038. |
[12] |
S. V. Gurov and L. V. Utkin, The time-dependent availability of repairable m-out-of-n cold standby systems by arbitrary distributions and repair facilities, Microelectronics and Reliability, 35 (1995), 1377-1393. Google Scholar |
[13] |
A. Horenbeek, L. Pintelon and P. Muchiri, Maintenance optimization models and criteria, International Journal of System Assurance Engineering and Management, 35 (2010), 189-200. Google Scholar |
[14] |
N. Jack, Repair replacement modeling over finite-time horizons, Journal of The Operational Research Society, 42 (1991), 759-766. Google Scholar |
[15] |
F. Kayedpour, M. Amiri, M. Rafizadeh and A. S. Nia, Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection, Reliability Engineering and System Safety, 160 (2017), 11-20. Google Scholar |
[16] |
V. P. Koutras, S. Malefaki and A. N. Platis, Optimization of the dependability and performance measures of a generic model for multi-state deteriorating systems under maintenance, Reliability Engineering and System Safety, 166 (2017), 73-86. Google Scholar |
[17] |
I. N. Kovalenko, N. Y. U. Kuznetsov and P. A. Pegg, Wiley Series in Probability and Statistics Mathematical Theory of Reliability of Time Dependent Systems with Practical Applications, Wiley, New York, 1997. Google Scholar |
[18] |
G. Levitin and A. Lisnianski, A new approach to solving problems of multi-state system reliability optimization, Quality and Reliability Engineering International, 17 (2001), 93-104. Google Scholar |
[19] |
N. Limnios and G. Oprisan,
A unified approach for reliability and performability evaluation of semi-Markov systems, Applied Stochastic Models in Business and Industry, 15 (1999), 353-368.
doi: 10.1002/(SICI)1526-4025(199910/12)15:4<353::AID-ASMB399>3.0.CO;2-2. |
[20] |
A. Lisnianski, Extended block diagram method for a multi-state system reliability assessment, Reliability Engineering and System Safety, 92 (2007), 1601-1607. Google Scholar |
[21] |
A. Lisnianski, I. Frenkel and L. Khvatskin, On sensitivity analysis of ageing multi-state system by using LZ-transform, Reliability Engineering and System Safety, 166 (2017), 99-108. Google Scholar |
[22] |
E. López-Santana, R. Akhavan-Tabatabaei, L. Dieulle, N. Labadie and A. L. Medaglia, On the combined maintenance and routing optimization problem, Reliability Engineering and System Safety, 145 (2016), 199-214. Google Scholar |
[23] |
E. Y. A. Maksoud and M. S. Moustafa, A semi-markov decision algorithm for the optimal maintenance of a multi-stage deteriorating two-unit standby system, Operational Research, 9 (2009), 167-182. Google Scholar |
[24] |
D. Montoro-Cazorla and R. Pérez-Ocón, A redundant n-system under shocks and repairs following Markovian arrival processes, Reliability Engineering and System Safety, 130 (2014), 69-75. Google Scholar |
[25] |
M. L. Neves, L. P. Santiago and C. A. Maia, A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection, Computers and Industry Engineering, 61 (2011), 503-511. Google Scholar |
[26] |
M. Nourelfath, E. Châtelet and N. Nahas, Joint redundancy and imperfect preventive maintenance optimization for series-parallel multi-state degraded systems, Reliability Engineering and System Safety, 103 (2012), 51-60. Google Scholar |
[27] |
H. Pham and H. Wang, Imperfect maintenance, European Journal of Operational Research, 94 (1996), 425-438. Google Scholar |
[28] |
K. Prem and P. Pratap, Computational methods for linear integral equations, Birkhäuser Boston, c/o Sprintger-Verlag, New York, Inc., 175 Fifth Avenue, New York, USA, 2002. Google Scholar |
[29] |
G. Rubino and B. Sericola, Interval availability analysis using denumerable Markov-processes application to multiprocessor subject to breakdowns and repair, IEEE Transactions on Computers, 44 (1995), 286-291. Google Scholar |
[30] |
J. E. Ruiz-Castro, Markov counting and reward processes for analysing the performance of a complex system subject to random inspections, Reliability Engineering and System Safety, 145 (2016), 155-168. Google Scholar |
[31] |
S. H. Sheu, C. Chang, Y. Chen and Z. George, Optimal preventive maintenance and repair policies for multi-state systems, Reliability Engineering and System Safety, 140 (2015), 78-87. Google Scholar |
[32] |
A. Sharma, G. S. Yadava and S. G. Deshmukh, A literature review and future perspectives on maintenance optimization, Journal of Quality in Maintenance Engineering, 17 (2011), 5-25. Google Scholar |
[33] |
I. W. Soro, M. Nourelfath and D. Aït-Kadi, Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance, Reliability Engineering and System Safety, 95 (2010), 65-69. Google Scholar |
[34] |
R. Srinivasan and A. K. Parlikad, Semi-Markov Decision Process With Partial Information for Maintenance Decisions, IEEE Transactions on Reliability, 63 (2014), 891-898. Google Scholar |
[35] |
D. Tang, V. Makis, L. Jafari and J. Yu, Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring, Reliability Engineering and System Safety, 134 (2015), 198-207. Google Scholar |
[36] |
S. Wu and P. Longhurst, Optimising age-replacement and extended non-renewing warranty policies, International Journal of Production Economics, 130 (2011), 262-267. Google Scholar |
[37] |
T. Xia, L. Xi, X. Zhou and J. Lee, Condition-based maintenance for intelligent monitored series system with independent machine failure modes, International Journal of Production Research, 51 (2013), 4585-4596. Google Scholar |
[38] |
M. Zhang, O. Gaudoin and M. Xie,
Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance, European Journal of Operational Research, 245 (2015), 531-541.
doi: 10.1016/j.ejor.2015.02.050. |
[39] |
X. Zhao, T. Nakagawa and M. J. Zuo, Optimal replacement last with continuous and discrete policies, IEEE Transactions on Reliability, 63 (2014), 868-880. Google Scholar |
[40] |
Z. Zheng, L. R. Cui and H. Li, Availability of semi-Markov repairable systems with history-dependent up and down states, In: Proceedings of the Third Asian international workshop, 2008,186--193. Google Scholar |
[41] |
X. Zhou, L. Xi and J. Lee, Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation, Reliability Engineering and System Safety, 92 (2007), 530-534. Google Scholar |
[42] |
X. Zhou, L. Xi and J. Lee, Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programming, International Journal of Production Economics, 118 (2009), 361-366. Google Scholar |
show all references
References:
[1] |
Z. Cheng, Z. Yang and B. Guo, Optimal opportunistic maintenance model of multi-unit systems, Journal of Systems Engineering and Electronics, 24 (2013), 811-817. Google Scholar |
[2] |
A. H. Christer and N. Jack,
An integral-equation approach for replacement modelling over finite time horizons, IMA Journal of Mathematics Applied in Business and Industry, 3 (1991), 31-44.
|
[3] |
M. Compare, F. Martini and E. Zio, Genetic algorithms for condition-based maintenance optimization under uncertainty, European Journal of Operational Research, 244 (2015), 611-623. Google Scholar |
[4] |
M. Compare and E. Zio, Genetic algorithms in the framework of dempster-shafer theory of evidence for maintenance optimization problems, IEEE Transactions on Reliability, 64 (2015), 645-660. Google Scholar |
[5] |
A. Csenki, An integral equation approach to the interval reliability of systems modelled by finite semi-Markov processes, Reliability Engineering and System Safety, 47 (1995), 37-45. Google Scholar |
[6] |
L. Cui, H. Li and J. Li,
Markov repairable systems with history-dependent up and down states, Stochastic Models, 23 (2007), 665-681.
doi: 10.1080/15326340701645983. |
[7] |
V. Dominguez,
High-order collocation and quadrature methods for some logarithmic kernel integral equations on open arcs, Journal of Computational and Applied Mathematics, 161 (2003), 145-159.
doi: 10.1016/S0377-0427(03)00583-1. |
[8] |
J. Driessen, H. Peng and G. van Houtum, Maintenance optimization under non-constant probabilities of imperfect inspections, Reliability Engineering and System Safety, 165 (2017), 115-123. Google Scholar |
[9] |
E. El-Neweihi and F. Proschan,
Degradable systems:a survey of multistate system theory, Communications in Statistics, 13 (1984), 405-432.
doi: 10.1080/03610928408828694. |
[10] |
S. Eryilmaz, Modeling dependence between two multi-state components via copulas, IEEE Transactions on Reliability, 63 (2014), 715-720. Google Scholar |
[11] |
M. Gu, X. Lu, J. Gu and Y. Zhang,
Single-machine scheduling problems with machine aging effect and an optional maintenance activity, Applied Mathematical Modelling, 40 (2016), 8862-8871.
doi: 10.1016/j.apm.2016.01.038. |
[12] |
S. V. Gurov and L. V. Utkin, The time-dependent availability of repairable m-out-of-n cold standby systems by arbitrary distributions and repair facilities, Microelectronics and Reliability, 35 (1995), 1377-1393. Google Scholar |
[13] |
A. Horenbeek, L. Pintelon and P. Muchiri, Maintenance optimization models and criteria, International Journal of System Assurance Engineering and Management, 35 (2010), 189-200. Google Scholar |
[14] |
N. Jack, Repair replacement modeling over finite-time horizons, Journal of The Operational Research Society, 42 (1991), 759-766. Google Scholar |
[15] |
F. Kayedpour, M. Amiri, M. Rafizadeh and A. S. Nia, Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection, Reliability Engineering and System Safety, 160 (2017), 11-20. Google Scholar |
[16] |
V. P. Koutras, S. Malefaki and A. N. Platis, Optimization of the dependability and performance measures of a generic model for multi-state deteriorating systems under maintenance, Reliability Engineering and System Safety, 166 (2017), 73-86. Google Scholar |
[17] |
I. N. Kovalenko, N. Y. U. Kuznetsov and P. A. Pegg, Wiley Series in Probability and Statistics Mathematical Theory of Reliability of Time Dependent Systems with Practical Applications, Wiley, New York, 1997. Google Scholar |
[18] |
G. Levitin and A. Lisnianski, A new approach to solving problems of multi-state system reliability optimization, Quality and Reliability Engineering International, 17 (2001), 93-104. Google Scholar |
[19] |
N. Limnios and G. Oprisan,
A unified approach for reliability and performability evaluation of semi-Markov systems, Applied Stochastic Models in Business and Industry, 15 (1999), 353-368.
doi: 10.1002/(SICI)1526-4025(199910/12)15:4<353::AID-ASMB399>3.0.CO;2-2. |
[20] |
A. Lisnianski, Extended block diagram method for a multi-state system reliability assessment, Reliability Engineering and System Safety, 92 (2007), 1601-1607. Google Scholar |
[21] |
A. Lisnianski, I. Frenkel and L. Khvatskin, On sensitivity analysis of ageing multi-state system by using LZ-transform, Reliability Engineering and System Safety, 166 (2017), 99-108. Google Scholar |
[22] |
E. López-Santana, R. Akhavan-Tabatabaei, L. Dieulle, N. Labadie and A. L. Medaglia, On the combined maintenance and routing optimization problem, Reliability Engineering and System Safety, 145 (2016), 199-214. Google Scholar |
[23] |
E. Y. A. Maksoud and M. S. Moustafa, A semi-markov decision algorithm for the optimal maintenance of a multi-stage deteriorating two-unit standby system, Operational Research, 9 (2009), 167-182. Google Scholar |
[24] |
D. Montoro-Cazorla and R. Pérez-Ocón, A redundant n-system under shocks and repairs following Markovian arrival processes, Reliability Engineering and System Safety, 130 (2014), 69-75. Google Scholar |
[25] |
M. L. Neves, L. P. Santiago and C. A. Maia, A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection, Computers and Industry Engineering, 61 (2011), 503-511. Google Scholar |
[26] |
M. Nourelfath, E. Châtelet and N. Nahas, Joint redundancy and imperfect preventive maintenance optimization for series-parallel multi-state degraded systems, Reliability Engineering and System Safety, 103 (2012), 51-60. Google Scholar |
[27] |
H. Pham and H. Wang, Imperfect maintenance, European Journal of Operational Research, 94 (1996), 425-438. Google Scholar |
[28] |
K. Prem and P. Pratap, Computational methods for linear integral equations, Birkhäuser Boston, c/o Sprintger-Verlag, New York, Inc., 175 Fifth Avenue, New York, USA, 2002. Google Scholar |
[29] |
G. Rubino and B. Sericola, Interval availability analysis using denumerable Markov-processes application to multiprocessor subject to breakdowns and repair, IEEE Transactions on Computers, 44 (1995), 286-291. Google Scholar |
[30] |
J. E. Ruiz-Castro, Markov counting and reward processes for analysing the performance of a complex system subject to random inspections, Reliability Engineering and System Safety, 145 (2016), 155-168. Google Scholar |
[31] |
S. H. Sheu, C. Chang, Y. Chen and Z. George, Optimal preventive maintenance and repair policies for multi-state systems, Reliability Engineering and System Safety, 140 (2015), 78-87. Google Scholar |
[32] |
A. Sharma, G. S. Yadava and S. G. Deshmukh, A literature review and future perspectives on maintenance optimization, Journal of Quality in Maintenance Engineering, 17 (2011), 5-25. Google Scholar |
[33] |
I. W. Soro, M. Nourelfath and D. Aït-Kadi, Performance evaluation of multi-state degraded systems with minimal repairs and imperfect preventive maintenance, Reliability Engineering and System Safety, 95 (2010), 65-69. Google Scholar |
[34] |
R. Srinivasan and A. K. Parlikad, Semi-Markov Decision Process With Partial Information for Maintenance Decisions, IEEE Transactions on Reliability, 63 (2014), 891-898. Google Scholar |
[35] |
D. Tang, V. Makis, L. Jafari and J. Yu, Optimal maintenance policy and residual life estimation for a slowly degrading system subject to condition monitoring, Reliability Engineering and System Safety, 134 (2015), 198-207. Google Scholar |
[36] |
S. Wu and P. Longhurst, Optimising age-replacement and extended non-renewing warranty policies, International Journal of Production Economics, 130 (2011), 262-267. Google Scholar |
[37] |
T. Xia, L. Xi, X. Zhou and J. Lee, Condition-based maintenance for intelligent monitored series system with independent machine failure modes, International Journal of Production Research, 51 (2013), 4585-4596. Google Scholar |
[38] |
M. Zhang, O. Gaudoin and M. Xie,
Degradation-based maintenance decision using stochastic filtering for systems under imperfect maintenance, European Journal of Operational Research, 245 (2015), 531-541.
doi: 10.1016/j.ejor.2015.02.050. |
[39] |
X. Zhao, T. Nakagawa and M. J. Zuo, Optimal replacement last with continuous and discrete policies, IEEE Transactions on Reliability, 63 (2014), 868-880. Google Scholar |
[40] |
Z. Zheng, L. R. Cui and H. Li, Availability of semi-Markov repairable systems with history-dependent up and down states, In: Proceedings of the Third Asian international workshop, 2008,186--193. Google Scholar |
[41] |
X. Zhou, L. Xi and J. Lee, Reliability-centered predictive maintenance scheduling for a continuously monitored system subject to degradation, Reliability Engineering and System Safety, 92 (2007), 530-534. Google Scholar |
[42] |
X. Zhou, L. Xi and J. Lee, Opportunistic preventive maintenance scheduling for a multi-unit series system based on dynamic programming, International Journal of Production Economics, 118 (2009), 361-366. Google Scholar |











1: Initialization: |
2: while |
3: Construct matrices |
|
4: Calculate the optimal vectors |
5: Assign |
|
|
6: Identify the optimal paths corresponding to |
7: Store each |
8: Judge whether or not there exists the case of not one-to-one correspondence. If yes, the forward search technique is used for all of the remaining states |
and append them into the tail of corresponding sub-lists of |
9: Update the vectors |
10: Judge whether each element of |
11: Update List |
12: Set |
13: end while |
14: Determine all time-spans in cycle |
|
|
15: Update |
16: Determine |
1: Initialization: |
2: while |
3: Construct matrices |
|
4: Calculate the optimal vectors |
5: Assign |
|
|
6: Identify the optimal paths corresponding to |
7: Store each |
8: Judge whether or not there exists the case of not one-to-one correspondence. If yes, the forward search technique is used for all of the remaining states |
and append them into the tail of corresponding sub-lists of |
9: Update the vectors |
10: Judge whether each element of |
11: Update List |
12: Set |
13: end while |
14: Determine all time-spans in cycle |
|
|
15: Update |
16: Determine |
30 | 31 | 32 | 33 | 34 | 35 | 36 | |
9.6186 | 9.6059 | 9.5939 | 9.5827 | 9.5721 | 9.5621 | 9.5527 | |
absolute error | 0.0127 | 0.0119 | 0.0112 | 0.0105 | 0.0099 | 0.0094 | |
relative error | 0.13% | 0.12% | 0.12% | 0.11% | 0.10% | 0.098% | |
37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
9.5438 | 9.5354 | 9.5274 | 9.5198 | 9.5126 | 9.5057 | 9.4992 | 9.4929 |
0.0088 | 0.0084 | 0.0079 | 0.0075 | 0.0072 | 0.0068 | 0.0065 | 0.0062 |
0.092% | 0.088% | 0.082% | 0.078% | 0.075% | 0.071% | 0.068% | 0.065% |
45 | 46 | 47 | 48 | 49 | 50 | ||
9.4869 | 9.4812 | 9.4758 | 9.4705 | 9.4655 | 9.4607 | ||
0.0059 | 0.0057 | 0.0054 | 0.0052 | 0.0050 | 0.0048 | ||
0.062% | 0.060% | 0.056% | 0.054% | 0.052% | 0.050% |
30 | 31 | 32 | 33 | 34 | 35 | 36 | |
9.6186 | 9.6059 | 9.5939 | 9.5827 | 9.5721 | 9.5621 | 9.5527 | |
absolute error | 0.0127 | 0.0119 | 0.0112 | 0.0105 | 0.0099 | 0.0094 | |
relative error | 0.13% | 0.12% | 0.12% | 0.11% | 0.10% | 0.098% | |
37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
9.5438 | 9.5354 | 9.5274 | 9.5198 | 9.5126 | 9.5057 | 9.4992 | 9.4929 |
0.0088 | 0.0084 | 0.0079 | 0.0075 | 0.0072 | 0.0068 | 0.0065 | 0.0062 |
0.092% | 0.088% | 0.082% | 0.078% | 0.075% | 0.071% | 0.068% | 0.065% |
45 | 46 | 47 | 48 | 49 | 50 | ||
9.4869 | 9.4812 | 9.4758 | 9.4705 | 9.4655 | 9.4607 | ||
0.0059 | 0.0057 | 0.0054 | 0.0052 | 0.0050 | 0.0048 | ||
0.062% | 0.060% | 0.056% | 0.054% | 0.052% | 0.050% |
Running time | The small-scale system | The large-scale system | |||
Weibull | general | Weibull | general | ||
maximum time | 0.0057 | 0.0051 | 0.089 | 0.093 | |
minimum time | 0.0043 | 0.0038 | 0.058 | 0.062 | |
mean time | 0.0052 | 0.0048 | 0.0751 | 0.0747 |
Running time | The small-scale system | The large-scale system | |||
Weibull | general | Weibull | general | ||
maximum time | 0.0057 | 0.0051 | 0.089 | 0.093 | |
minimum time | 0.0043 | 0.0038 | 0.058 | 0.062 | |
mean time | 0.0052 | 0.0048 | 0.0751 | 0.0747 |
Errors | Weibull (Case 1 & Case 3) | General (Case 2 & Case 4) | ||
$\lambda$ | $\alpha$ | $\lambda$ | ||
-10% | 0.36 | 1.8 | 1.08 | |
-5% | 0.38 | 1.9 | 1.14 | |
0% | 0.4 | 2 | 1.2 | |
5% | 0.42 | 2.1 | 1.26 | |
10% | 0.44 | 2.2 | 1.32 |
Errors | Weibull (Case 1 & Case 3) | General (Case 2 & Case 4) | ||
$\lambda$ | $\alpha$ | $\lambda$ | ||
-10% | 0.36 | 1.8 | 1.08 | |
-5% | 0.38 | 1.9 | 1.14 | |
0% | 0.4 | 2 | 1.2 | |
5% | 0.42 | 2.1 | 1.26 | |
10% | 0.44 | 2.2 | 1.32 |
errors of | errors of | ||||
-10% | 0.36 | 1.8 | 400.80 | -0.17% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
-5% | 0.38 | 1.9 | 401.16 | -0.08% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
0%s | 0.4 | 2 | 401.48 | 0% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
5% | 0.42 | 2.1 | 401.80 | 0.08% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
10% | 0.44 | 2.2 | 402.04 | 0.14% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
errors of | errors of | ||||
-10% | 0.36 | 1.8 | 400.80 | -0.17% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
-5% | 0.38 | 1.9 | 401.16 | -0.08% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
0%s | 0.4 | 2 | 401.48 | 0% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
5% | 0.42 | 2.1 | 401.80 | 0.08% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
10% | 0.44 | 2.2 | 402.04 | 0.14% | {1 7 3 8 2 8 3 5 4 8 2 6 3 6 3 9} |
errors of |
errors of |
|||
-10% | 1.08 | 352.60 | -0.13% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
-5% | 1.14 | 352.84 | -0.06% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
0% | 1.2 | 353.05 | 0% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
5% | 1.26 | 353.26 | 0.06% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
10% | 1.32 | 353.44 | 0.11% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
errors of |
errors of |
|||
-10% | 1.08 | 352.60 | -0.13% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
-5% | 1.14 | 352.84 | -0.06% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
0% | 1.2 | 353.05 | 0% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
5% | 1.26 | 353.26 | 0.06% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
10% | 1.32 | 353.44 | 0.11% | {1 8 4 7 3 6 3 7 2 5 4 6 4 9} |
errors of $\lambda$ and $\alpha$ | $\lambda$ | $\alpha$ | $T^{*}(t, a_{t_q})$ | errors of $T^{*}(t, a_{t_q})$ | $D^*$ |
-10% | 0.36 | 1.8 | 710.29 | -0.05% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
-5% | 0.38 | 1.9 | 710.43 | -0.03% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
0% | 0.4 | 2 | 710.65 | 0% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
5% | 0.42 | 2.1 | 710.80 | 0.02% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
10% | 0.44 | 2.2 | 710.93 | 0.04% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
errors of $\lambda$ and $\alpha$ | $\lambda$ | $\alpha$ | $T^{*}(t, a_{t_q})$ | errors of $T^{*}(t, a_{t_q})$ | $D^*$ |
-10% | 0.36 | 1.8 | 710.29 | -0.05% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
-5% | 0.38 | 1.9 | 710.43 | -0.03% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
0% | 0.4 | 2 | 710.65 | 0% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
5% | 0.42 | 2.1 | 710.80 | 0.02% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
10% | 0.44 | 2.2 | 710.93 | 0.04% | {1 42 10 34 26 32 14 40 27 45 2 35 14 46 11 40 26 48 19 46 2 44 29 45 5 50} |
errors of $\lambda$ | $\lambda$ | $T^{*}(t, a_{t_q})$ | errors of $T^{*}(t, a_{t_q})$ | $D^*$ |
-10% | 1.08 | 652.28 | -0.05% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
-5% | 1.14 | 652.48 | -0.02% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
0% | 1.2 | 652.61 | 0% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
5% | 1.26 | 652.81 | 0.03% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
10% | 1.32 | 652.94 | 0.05% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
errors of $\lambda$ | $\lambda$ | $T^{*}(t, a_{t_q})$ | errors of $T^{*}(t, a_{t_q})$ | $D^*$ |
-10% | 1.08 | 652.28 | -0.05% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
-5% | 1.14 | 652.48 | -0.02% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
0% | 1.2 | 652.61 | 0% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
5% | 1.26 | 652.81 | 0.03% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
10% | 1.32 | 652.94 | 0.05% | {1 41 5 34 20 35 2 31 7 33 15 32 26 34 16 46 26 34 29 44 14 49 8 50} |
[1] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[2] |
Max E. Gilmore, Chris Guiver, Hartmut Logemann. Sampled-data integral control of multivariable linear infinite-dimensional systems with input nonlinearities. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021001 |
[3] |
Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149 |
[4] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[5] |
Tengfei Yan, Qunying Liu, Bowen Dou, Qing Li, Bowen Li. An adaptive dynamic programming method for torque ripple minimization of PMSM. Journal of Industrial & Management Optimization, 2021, 17 (2) : 827-839. doi: 10.3934/jimo.2019136 |
[6] |
Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2021001 |
[7] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[8] |
Bilel Elbetch, Tounsia Benzekri, Daniel Massart, Tewfik Sari. The multi-patch logistic equation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021025 |
[9] |
Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65 |
[10] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[11] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[12] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291 |
[13] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[14] |
Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021005 |
[15] |
Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021003 |
[16] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[17] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[18] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[19] |
Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292 |
[20] |
Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]