
-
Previous Article
A primal-dual interior-point method capable of rapidly detecting infeasibility for nonlinear programs
- JIMO Home
- This Issue
-
Next Article
An optimal maintenance strategy for multi-state systems based on a system linear integral equation and dynamic programming
A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems
Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China |
It is commonly accepted that the estimation error of asset returns' sample mean is much larger than that of sample covariance. In order to hedge the risk raised by the estimation error of the sample mean, we propose a sparse and robust multi-period mean-variance portfolio selection model and show how this proposed model can be equivalently reformulated as a multi-block nonsmooth convex optimization problem. In order to get an optimal strategy, a symmetric Gauss-Seidel based method is implemented. Moreover, we show that the algorithm is globally linearly convergent. The effectiveness of our portfolio selection model and the efficiency of its solution method are demonstrated by empirical experiments on both the synthetic and real datasets.
References:
[1] |
F. J. Aragón Artacho and M. H. Geoffroy,
Characterization of metric regularity of subdifferentials, Journal of Convex Analysis, 15 (2008), 365-380.
|
[2] |
A. Ben-Tal, T. Margalit and A. Nemirovski,
Robust modeling of multi-stage portfolio problems, High Performance Optimization, 33 (2000), 303-328.
doi: 10.1007/978-1-4757-3216-0_12. |
[3] |
D. Bertsimas and M. Sim,
Tractable approximations to robust conic optimization problems, Mathematical Programming, 107 (2006), 5-36.
doi: 10.1007/s10107-005-0677-1. |
[4] |
J. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer, New York, 2006.
doi: 10.1007/978-0-387-31256-9. |
[5] |
G. C. Calafiore,
Multi-period portfolio optimization with linear control policies, Automatica, 44 (2008), 2463-2473.
doi: 10.1016/j.automatica.2008.02.007. |
[6] |
L. K. Chan, J. Karceski and J. Lakonishok, On portfolio optimization: Forecasting covariances and choosing the risk model, The Review of Financial Studies, 12 (1999), 937-974. Google Scholar |
[7] |
C. Chen, B. He, Y. Ye and X. Yuan,
The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5. |
[8] |
L. Chen, D. F. Sun and K.-C. Toh,
An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming, Mathematical Programming, 161 (2017), 237-270.
doi: 10.1007/s10107-016-1007-5. |
[9] |
V. K. Chopra and W. T. Ziemba, The effect of errors in means, variances, and covariances on optimal portfolio choice, The Journal of Portfolio Management, 19 (1993), 6-11. Google Scholar |
[10] |
F. H. Clarke, Optimization and Nonsmooth Analysis, volume 5. SIAM, 1990.
doi: 10.1137/1.9781611971309. |
[11] |
L. Condat,
Fast projection onto the simplex and the $\ell_1$ ball, Mathematical Programming, 158 (2016), 575-585.
doi: 10.1007/s10107-015-0946-6. |
[12] |
X. Cui, J. Gao, X. Li and D. Li,
Optimal multi-period mean--variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040. |
[13] |
G. B. Dantzig and G. Infanger,
Multi-stage stochastic linear programs for portfolio optimization, Annals of Operations Research, 45 (1993), 59-76.
doi: 10.1007/BF02282041. |
[14] |
V. DeMiguel and F. J. Nogales,
Portfolio selection with robust estimation, Operations Research, 57 (2009), 560-577.
doi: 10.1287/opre.1080.0566. |
[15] |
A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer Monographs in Mathematics. Springer, Dordrecht, 2009.
doi: 10.1007/978-0-387-87821-8. |
[16] |
M. Fazel, T. K. Pong, D. F. Sun and P. Tseng,
Hankel matrix rank minimization with applications to system identification and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 946-977.
doi: 10.1137/110853996. |
[17] |
J. Gao and D. Li,
Optimal cardinality constrained portfolio selection, Operations Research, 61 (2013), 745-761.
doi: 10.1287/opre.2013.1170. |
[18] |
N. Gülpinar and B. Rustem,
Worst-case robust decisions for multi-period mean--variance portfolio optimization, European Journal of Operational Research, 183 (2007), 981-1000.
doi: 10.1016/j.ejor.2006.02.046. |
[19] |
W. W. Hager and H. Zhang,
Projection onto a polyhedron that exploits sparsity, SIAM Journal on Optimization, 26 (2016), 1773-1798.
doi: 10.1137/15M102825X. |
[20] |
D. Han, D. F. Sun and L. Zhang,
Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Mathematics of Operations Research, 43 (2018), 622-637.
doi: 10.1287/moor.2017.0875. |
[21] |
R. Jagannathan and T. Ma, Risk reduction in large portfolios: Why imposing the wrong constraints helps, The Journal of Finance, 58 (2003), 1651-1683. Google Scholar |
[22] |
J. H. Kim, W. C. Kim and F. J. Fabozzi,
Recent developments in robust portfolios with a worst-case approach, Journal of Optimization Theory and Applications, 161 (2014), 103-121.
doi: 10.1007/s10957-013-0329-1. |
[23] |
H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531. Google Scholar |
[24] |
X. Y. Lam, J. Marron, D. Sun and K.-C. Toh,
Fast algorithms for large-scale generalized distance weighted discrimination, Journal of Computational and Graphical Statistics, 27 (2018), 368-379.
doi: 10.1080/10618600.2017.1366915. |
[25] |
X. Li, D. F. Sun and K.-C. Toh, A block symmetric {Gauss--Seidel} decomposition theorem for convex composite quadratic programming and its applications, Mathematical Programming, (2018), 1-24, . Google Scholar |
[26] |
X. D. Li, D. F. Sun and K.-C. Toh,
A schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[27] |
X. D. Li, D. F. Sun and K.-C. Toh,
QSDPNAL: A two-phase augmented Lagrangian method for convex quadratic semidefinite programming, Mathematical Programming Computation, 10 (2018), 703-743.
doi: 10.1007/s12532-018-0137-6. |
[28] |
H. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. Google Scholar |
[29] |
X. Mei, V. DeMiguel and F. J. Nogales, Multiperiod portfolio optimization with multiple risky assets and general transaction costs, Finance, 69 (2016), 108-120. Google Scholar |
[30] |
R. O. Michaud, The markowitz optimization enigma: Is 'optimized' optimal?, Financial Analysts Journal, 45 (1989), 31-42. Google Scholar |
[31] |
S. M. Robinson,
Some continuity properties of polyhedral multifunctions, Mathematical Programming at Oberwolfach, 14 (1981), 206-214.
doi: 10.1007/bfb0120929. |
[32] |
R. T. Rockafellar,
Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97. |
[33] |
R. T. Rockafellar, Convex Analysis, Princeton university press, 1997.
![]() |
[34] |
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of risk, 2 (2000), 21-42. Google Scholar |
[35] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, volume 317, Springer Science & Business Media, 1998. Google Scholar |
[36] |
M. Sion,
On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.
doi: 10.2140/pjm.1958.8.171. |
[37] |
D. F. Sun, K.-C. Toh and L. Q. Yang,
A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM Journal on Optimization, 25 (2015), 882-915.
doi: 10.1137/140964357. |
[38] |
Y. Sun, G. Aw, K. L. Teo and G. Zhou,
Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283.
doi: 10.3934/jimo.2015.11.1275. |
[39] |
R. J.-B. Wets,
Stochastic programs with fixed recourse: The equivalent deterministic program, SIAM Review, 16 (1974), 309-339.
doi: 10.1137/1016053. |
[40] |
J. Yang, D. F. Sun and K.-C. Toh,
A proximal point algorithm for log-determinant optimization with group lasso regularization, SIAM Journal on Optimization, 23 (2013), 857-893.
doi: 10.1137/120864192. |
[41] |
J. J. Ye and X. Y. Ye,
Necessary optimality conditions for optimization problems with variational inequality constraints, Mathematics of Operations Research, 22 (1997), 977-997.
doi: 10.1287/moor.22.4.977. |
[42] |
J. J. Ye and J. Zhang,
Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications, Mathematical Programming, 139 (2013), 353-381.
doi: 10.1007/s10107-013-0667-7. |
[43] |
J. Zhai and M. Bai,
Mean-risk model for uncertain portfolio selection with background risk, Journal of Computational and Applied Mathematics, 330 (2018), 59-69.
doi: 10.1016/j.cam.2017.07.038. |
[44] |
Y. Zhang, X. Li and S. Guo,
Portfolio selection problems with markowitz's mean--variance framework: A review of literature, Fuzzy Optimization and Decision Making, 17 (2018), 125-158.
doi: 10.1007/s10700-017-9266-z. |
show all references
References:
[1] |
F. J. Aragón Artacho and M. H. Geoffroy,
Characterization of metric regularity of subdifferentials, Journal of Convex Analysis, 15 (2008), 365-380.
|
[2] |
A. Ben-Tal, T. Margalit and A. Nemirovski,
Robust modeling of multi-stage portfolio problems, High Performance Optimization, 33 (2000), 303-328.
doi: 10.1007/978-1-4757-3216-0_12. |
[3] |
D. Bertsimas and M. Sim,
Tractable approximations to robust conic optimization problems, Mathematical Programming, 107 (2006), 5-36.
doi: 10.1007/s10107-005-0677-1. |
[4] |
J. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples, Springer, New York, 2006.
doi: 10.1007/978-0-387-31256-9. |
[5] |
G. C. Calafiore,
Multi-period portfolio optimization with linear control policies, Automatica, 44 (2008), 2463-2473.
doi: 10.1016/j.automatica.2008.02.007. |
[6] |
L. K. Chan, J. Karceski and J. Lakonishok, On portfolio optimization: Forecasting covariances and choosing the risk model, The Review of Financial Studies, 12 (1999), 937-974. Google Scholar |
[7] |
C. Chen, B. He, Y. Ye and X. Yuan,
The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5. |
[8] |
L. Chen, D. F. Sun and K.-C. Toh,
An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming, Mathematical Programming, 161 (2017), 237-270.
doi: 10.1007/s10107-016-1007-5. |
[9] |
V. K. Chopra and W. T. Ziemba, The effect of errors in means, variances, and covariances on optimal portfolio choice, The Journal of Portfolio Management, 19 (1993), 6-11. Google Scholar |
[10] |
F. H. Clarke, Optimization and Nonsmooth Analysis, volume 5. SIAM, 1990.
doi: 10.1137/1.9781611971309. |
[11] |
L. Condat,
Fast projection onto the simplex and the $\ell_1$ ball, Mathematical Programming, 158 (2016), 575-585.
doi: 10.1007/s10107-015-0946-6. |
[12] |
X. Cui, J. Gao, X. Li and D. Li,
Optimal multi-period mean--variance policy under no-shorting constraint, European Journal of Operational Research, 234 (2014), 459-468.
doi: 10.1016/j.ejor.2013.02.040. |
[13] |
G. B. Dantzig and G. Infanger,
Multi-stage stochastic linear programs for portfolio optimization, Annals of Operations Research, 45 (1993), 59-76.
doi: 10.1007/BF02282041. |
[14] |
V. DeMiguel and F. J. Nogales,
Portfolio selection with robust estimation, Operations Research, 57 (2009), 560-577.
doi: 10.1287/opre.1080.0566. |
[15] |
A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings, Springer Monographs in Mathematics. Springer, Dordrecht, 2009.
doi: 10.1007/978-0-387-87821-8. |
[16] |
M. Fazel, T. K. Pong, D. F. Sun and P. Tseng,
Hankel matrix rank minimization with applications to system identification and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 946-977.
doi: 10.1137/110853996. |
[17] |
J. Gao and D. Li,
Optimal cardinality constrained portfolio selection, Operations Research, 61 (2013), 745-761.
doi: 10.1287/opre.2013.1170. |
[18] |
N. Gülpinar and B. Rustem,
Worst-case robust decisions for multi-period mean--variance portfolio optimization, European Journal of Operational Research, 183 (2007), 981-1000.
doi: 10.1016/j.ejor.2006.02.046. |
[19] |
W. W. Hager and H. Zhang,
Projection onto a polyhedron that exploits sparsity, SIAM Journal on Optimization, 26 (2016), 1773-1798.
doi: 10.1137/15M102825X. |
[20] |
D. Han, D. F. Sun and L. Zhang,
Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Mathematics of Operations Research, 43 (2018), 622-637.
doi: 10.1287/moor.2017.0875. |
[21] |
R. Jagannathan and T. Ma, Risk reduction in large portfolios: Why imposing the wrong constraints helps, The Journal of Finance, 58 (2003), 1651-1683. Google Scholar |
[22] |
J. H. Kim, W. C. Kim and F. J. Fabozzi,
Recent developments in robust portfolios with a worst-case approach, Journal of Optimization Theory and Applications, 161 (2014), 103-121.
doi: 10.1007/s10957-013-0329-1. |
[23] |
H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science, 37 (1991), 519-531. Google Scholar |
[24] |
X. Y. Lam, J. Marron, D. Sun and K.-C. Toh,
Fast algorithms for large-scale generalized distance weighted discrimination, Journal of Computational and Graphical Statistics, 27 (2018), 368-379.
doi: 10.1080/10618600.2017.1366915. |
[25] |
X. Li, D. F. Sun and K.-C. Toh, A block symmetric {Gauss--Seidel} decomposition theorem for convex composite quadratic programming and its applications, Mathematical Programming, (2018), 1-24, . Google Scholar |
[26] |
X. D. Li, D. F. Sun and K.-C. Toh,
A schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions, Mathematical Programming, 155 (2016), 333-373.
doi: 10.1007/s10107-014-0850-5. |
[27] |
X. D. Li, D. F. Sun and K.-C. Toh,
QSDPNAL: A two-phase augmented Lagrangian method for convex quadratic semidefinite programming, Mathematical Programming Computation, 10 (2018), 703-743.
doi: 10.1007/s12532-018-0137-6. |
[28] |
H. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), 77-91. Google Scholar |
[29] |
X. Mei, V. DeMiguel and F. J. Nogales, Multiperiod portfolio optimization with multiple risky assets and general transaction costs, Finance, 69 (2016), 108-120. Google Scholar |
[30] |
R. O. Michaud, The markowitz optimization enigma: Is 'optimized' optimal?, Financial Analysts Journal, 45 (1989), 31-42. Google Scholar |
[31] |
S. M. Robinson,
Some continuity properties of polyhedral multifunctions, Mathematical Programming at Oberwolfach, 14 (1981), 206-214.
doi: 10.1007/bfb0120929. |
[32] |
R. T. Rockafellar,
Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97. |
[33] |
R. T. Rockafellar, Convex Analysis, Princeton university press, 1997.
![]() |
[34] |
R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of risk, 2 (2000), 21-42. Google Scholar |
[35] |
R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, volume 317, Springer Science & Business Media, 1998. Google Scholar |
[36] |
M. Sion,
On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.
doi: 10.2140/pjm.1958.8.171. |
[37] |
D. F. Sun, K.-C. Toh and L. Q. Yang,
A convergent 3-block semiproximal alternating direction method of multipliers for conic programming with 4-type constraints, SIAM Journal on Optimization, 25 (2015), 882-915.
doi: 10.1137/140964357. |
[38] |
Y. Sun, G. Aw, K. L. Teo and G. Zhou,
Portfolio optimization using a new probabilistic risk measure, Journal of Industrial and Management Optimization, 11 (2015), 1275-1283.
doi: 10.3934/jimo.2015.11.1275. |
[39] |
R. J.-B. Wets,
Stochastic programs with fixed recourse: The equivalent deterministic program, SIAM Review, 16 (1974), 309-339.
doi: 10.1137/1016053. |
[40] |
J. Yang, D. F. Sun and K.-C. Toh,
A proximal point algorithm for log-determinant optimization with group lasso regularization, SIAM Journal on Optimization, 23 (2013), 857-893.
doi: 10.1137/120864192. |
[41] |
J. J. Ye and X. Y. Ye,
Necessary optimality conditions for optimization problems with variational inequality constraints, Mathematics of Operations Research, 22 (1997), 977-997.
doi: 10.1287/moor.22.4.977. |
[42] |
J. J. Ye and J. Zhang,
Enhanced Karush-Kuhn-Tucker condition and weaker constraint qualifications, Mathematical Programming, 139 (2013), 353-381.
doi: 10.1007/s10107-013-0667-7. |
[43] |
J. Zhai and M. Bai,
Mean-risk model for uncertain portfolio selection with background risk, Journal of Computational and Applied Mathematics, 330 (2018), 59-69.
doi: 10.1016/j.cam.2017.07.038. |
[44] |
Y. Zhang, X. Li and S. Guo,
Portfolio selection problems with markowitz's mean--variance framework: A review of literature, Fuzzy Optimization and Decision Making, 17 (2018), 125-158.
doi: 10.1007/s10700-017-9266-z. |


![]() |
||
sGS-sPADMM Iter |
ADMM-d Iter |
|
200 | 348.8 |
345.9 |
300 | 187.3 |
325.9 |
500 | 175.6 |
275.3 |
1000 | 250.2 |
296.6 |
1500 | 346.7 |
469.4 |
2000 | 406.0 |
585.2 |
![]() |
||
sGS-sPADMM Iter |
ADMM-d Iter |
|
200 | 348.8 |
345.9 |
300 | 187.3 |
325.9 |
500 | 175.6 |
275.3 |
1000 | 250.2 |
296.6 |
1500 | 346.7 |
469.4 |
2000 | 406.0 |
585.2 |
![]() |
||
sGS-sPADMM Iter |
ADMM-d Iter |
|
200 | 386.5 |
349.4 |
300 | 237.4 |
300.8 |
500 | 226.4 |
330.1 |
1000 | 287.0 |
395.2 |
1500 | 387.1 |
561.9 |
2000 | 480.0 |
596.7 |
![]() |
||
sGS-sPADMM Iter |
ADMM-d Iter |
|
200 | 386.5 |
349.4 |
300 | 237.4 |
300.8 |
500 | 226.4 |
330.1 |
1000 | 287.0 |
395.2 |
1500 | 387.1 |
561.9 |
2000 | 480.0 |
596.7 |
Period | nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
|
Jan. | 1.0e-06 | 272 | 284 |
283 |
539 |
5.0e-06 | 171 | 248 |
373 |
715 |
|
1.0e-05 | 112 | 246 |
500 |
850 |
|
Feb. | 1.0e-06 | 288 | 249 |
301 |
464 |
5.0e-06 | 173 | 250 |
321 |
568 | |
1.0e-05 | 125 | 258 |
373 |
701 |
|
Mar. | 1.0e-06 | 269 | 223 |
253 |
484 |
5.0e-06 | 153 | 229 |
310 |
596 | |
1.0e-05 | 122 | 238 |
358 |
594 |
|
Apr. | 1.0e-06 | 272 | 272 |
316 |
573 |
5.0e-06 | 144 | 285 |
477 |
902 | |
1.0e-05 | 108 | 264 |
548 |
915 |
|
May | 1.0e-06 | 244 | 290 |
510 |
941 |
5.0e-06 | 127 | 337 |
635 |
1110 | |
1.0e-05 | 94 | 294 |
765 |
1354 |
|
Jun. | 1.0e-06 | 274 | 281 |
448 |
805 |
5.0e-06 | 151 | 239 |
478 |
911 | |
1.0e-05 | 105 | 386 |
509 |
983 |
Period | nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
|
Jan. | 1.0e-06 | 272 | 284 |
283 |
539 |
5.0e-06 | 171 | 248 |
373 |
715 |
|
1.0e-05 | 112 | 246 |
500 |
850 |
|
Feb. | 1.0e-06 | 288 | 249 |
301 |
464 |
5.0e-06 | 173 | 250 |
321 |
568 | |
1.0e-05 | 125 | 258 |
373 |
701 |
|
Mar. | 1.0e-06 | 269 | 223 |
253 |
484 |
5.0e-06 | 153 | 229 |
310 |
596 | |
1.0e-05 | 122 | 238 |
358 |
594 |
|
Apr. | 1.0e-06 | 272 | 272 |
316 |
573 |
5.0e-06 | 144 | 285 |
477 |
902 | |
1.0e-05 | 108 | 264 |
548 |
915 |
|
May | 1.0e-06 | 244 | 290 |
510 |
941 |
5.0e-06 | 127 | 337 |
635 |
1110 | |
1.0e-05 | 94 | 294 |
765 |
1354 |
|
Jun. | 1.0e-06 | 274 | 281 |
448 |
805 |
5.0e-06 | 151 | 239 |
478 |
911 | |
1.0e-05 | 105 | 386 |
509 |
983 |
|
|
nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
2 | 1.0e-06 | 270 | 473 |
1189 |
1296 |
5.0e-06 | 128 | 636 |
1025 |
1260 |
|
1.0e-05 | 109 | 585 |
1356 |
1234 |
|
3 | 1.0e-06 | 254 | 623 |
1327 |
1362 |
5.0e-06 | 125 | 939 |
1522 |
1346 |
|
1.0e-05 | 103 | 675 |
1484 |
1319 |
|
|
nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
2 | 1.0e-06 | 270 | 473 |
1189 |
1296 |
5.0e-06 | 128 | 636 |
1025 |
1260 |
|
1.0e-05 | 109 | 585 |
1356 |
1234 |
|
3 | 1.0e-06 | 254 | 623 |
1327 |
1362 |
5.0e-06 | 125 | 939 |
1522 |
1346 |
|
1.0e-05 | 103 | 675 |
1484 |
1319 |
|
nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
|
2 | 1.0e-06 | 237 | 490 |
1146 |
1924 |
5.0e-06 | 138 | 681 |
1297 |
1584 |
|
1.0e-05 | 120 | 596 |
1213 |
1569 |
|
3 | 1.0e-06 | 225 | 752 |
810 |
1895 |
5.0e-06 | 133 | 809 |
1057 |
1828 |
|
1.0e-05 | 120 | 648 |
1377 |
2292 |
|
nnz | sGS-sPADMM Iter |
ADMM-d Iter |
sPADMM Iter |
|
2 | 1.0e-06 | 237 | 490 |
1146 |
1924 |
5.0e-06 | 138 | 681 |
1297 |
1584 |
|
1.0e-05 | 120 | 596 |
1213 |
1569 |
|
3 | 1.0e-06 | 225 | 752 |
810 |
1895 |
5.0e-06 | 133 | 809 |
1057 |
1828 |
|
1.0e-05 | 120 | 648 |
1377 |
2292 |
[1] |
Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130 |
[2] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[3] |
Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100 |
[4] |
Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109 |
[5] |
Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132 |
[6] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[7] |
Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020166 |
[8] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[9] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[10] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[11] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[12] |
Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, 2021, 20 (2) : 801-815. doi: 10.3934/cpaa.2020291 |
[13] |
Hedy Attouch, Aïcha Balhag, Zaki Chbani, Hassan Riahi. Fast convex optimization via inertial dynamics combining viscous and Hessian-driven damping with time rescaling. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021010 |
[14] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
[15] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[16] |
Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial & Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 |
[17] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[18] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021011 |
[19] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[20] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]