• Previous Article
    Performance evaluation and analysis of a discrete queue system with multiple working vacations and non-preemptive priority
  • JIMO Home
  • This Issue
  • Next Article
    Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks
May  2020, 16(3): 1119-1134. doi: 10.3934/jimo.2018195

Performance analysis and optimization for cognitive radio networks with a finite primary user buffer and a probability returning scheme

1. 

School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

2. 

Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan

* Corresponding author: Yuan Zhao

Received  October 2017 Revised  January 2018 Published  December 2018

In this paper, in order to reduce possible packet loss of the primary users (PUs) in cognitive radio networks, we assume there is a buffer with a finite capacity for the PU packets. At the same time, focusing on the packet interruptions of the secondary users (SUs), we introduce a probability returning scheme for the interrupted SU packets. In order to evaluate the influence of the finite buffer setting and the probability returning scheme to the system performance, we construct and analyze a discrete-time Markov chain model. Accordingly, we determine the expressions of some important performance measures of the PU packets and the SU packets. Then, we show numerical results to evaluate how the buffer setting of the PU packets and the returning probability influence the system performance. Moreover, we optimize the system access actions of the SU packets. We determine their individually and the socially optimal strategies by considering different buffer settings for PU packets and different returning probabilities for SU packets. Finally, a pricing policy by introducing an admission fee is also provided to coincide the two optimal strategies.

Citation: Yuan Zhao, Wuyi Yue. Performance analysis and optimization for cognitive radio networks with a finite primary user buffer and a probability returning scheme. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1119-1134. doi: 10.3934/jimo.2018195
References:
[1]

A. Alfa, Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System, Springer, New York, 2010. doi: 10.1007/978-1-4419-7314-6.  Google Scholar

[2]

A. Asheralieva and Y. Miyanaga, Joint bandwidth and power allocation for LTE-based cognitive radio network based on buffer occupancy, Mobile Information Systems, 2016 (2016), Article ID 6306580, 23 pages. Google Scholar

[3]

B. BenmammarA. Amraoui and F. Krief, A survey on dynamic spectrum access techniques in cognitive radio networks, International Journal of Communication Networks and Information Security, 5 (2013), 68-79.   Google Scholar

[4]

C. DoN. TranM. NguyenC. Hong and S. Lee, Social optimization strategy in unobserved queueing systems in cognitive radio networks, IEEE Communications Letters, 16 (2012), 1944-1947.   Google Scholar

[5]

A. Fakhrudeen and O. Alani, Comprehensive survey on quality of service provisioning approaches in cognitive radio networks: Part one, International Journal of Wireless Information Networks, 24 (2017), 356-388.   Google Scholar

[6]

M. HassanG. KarmakarJ. Kamruzzaman and B. Srinivasan, Exclusive use spectrum access trading models in cognitive radio networks: A survey, Tutorials, 19 (2017), 2192-2231.   Google Scholar

[7] R. Hassin, Rational Queueing, CRC Press, New York, 2016.  doi: 10.1201/b20014.  Google Scholar
[8]

R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems, Kluwer Academic Publishers, Boston, 2003. doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[9]

S. Jin, S. Chen and J. Zhang, Social optimization and pricing policy in cognitive radio networks with an energy saving strategy, Mobile Information Systems, 2016 (2016), Article ID 2426580, 10 pages. Google Scholar

[10]

H. Li and Z. Han, Socially optimal queuing control in cognitive radio networks subject to service interruptions: To queue or not to queue?, IEEE Transactions on Wireless Communications, 10 (2011), 1656-1666.   Google Scholar

[11]

M. NaeemA. AnpalaganM. Jaseemuddin and D. Lee, Resource allocation techniques in cooperative cognitive radio networks, Tutorials, 16 (2014), 729-744.   Google Scholar

[12]

S. Pandit and G. Singh, An overview of spectrum sharing techniques in cognitive radio communication system, Wireless Networks, 23 (2017), 497-518.   Google Scholar

[13]

Y. Saleem and M. Rehmani, Primary radio user activity models for cognitive radio networks: A survey, Journal of Network and Computer Applications, 43 (2014), 1-16.   Google Scholar

[14]

A. SultanaX. Fernando and L. Zhao, An overview of medium access control strategies for opportunistic spectrum access in cognitive radio networks, Peer-to-Peer Networking and Applications, 10 (2017), 1113-1141.   Google Scholar

[15]

N. Tian and G. Zhang, Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.  Google Scholar

[16]

E. TragosS. ZeadallyA. Fragkiadakis and V. Siris, Spectrum assignment in cognitive radio networks: A comprehensive survey, Tutorials, 15 (2013), 1108-1135.   Google Scholar

[17]

Z. ZhangK. Long and J. Wang, Self-organization paradigms and optimization approaches for cognitive radio technologies: A survey, IEEE Wireless Communications, 20 (2013), 36-42.   Google Scholar

[18]

Y. ZhaoS. Jin and W. Yue, A novel spectrum access strategy with α-retry policy in cognitive radio networks: A queueing-based analysis, Journal of Communications and Networks, 16 (2014), 193-201.   Google Scholar

[19]

Y. Zhao and W. Yue, Performance evaluation of cognitive radio networks with a finite buffer setting for primary users, in Queueing Theory and Network Applications (eds. W. Yue, Q. Li, S. Jin and Z. Ma), Springer, (2017), 168-179. Google Scholar

[20]

Y. Zhao and W. Yue, Performance analysis and optimization of cognitive radio networks with retransmission control, Optimization Letters, 12 (2018), 1281-1300.  doi: 10.1007/s11590-017-1119-8.  Google Scholar

show all references

References:
[1]

A. Alfa, Queueing Theory for Telecommunications: Discrete Time Modelling of a Single Node System, Springer, New York, 2010. doi: 10.1007/978-1-4419-7314-6.  Google Scholar

[2]

A. Asheralieva and Y. Miyanaga, Joint bandwidth and power allocation for LTE-based cognitive radio network based on buffer occupancy, Mobile Information Systems, 2016 (2016), Article ID 6306580, 23 pages. Google Scholar

[3]

B. BenmammarA. Amraoui and F. Krief, A survey on dynamic spectrum access techniques in cognitive radio networks, International Journal of Communication Networks and Information Security, 5 (2013), 68-79.   Google Scholar

[4]

C. DoN. TranM. NguyenC. Hong and S. Lee, Social optimization strategy in unobserved queueing systems in cognitive radio networks, IEEE Communications Letters, 16 (2012), 1944-1947.   Google Scholar

[5]

A. Fakhrudeen and O. Alani, Comprehensive survey on quality of service provisioning approaches in cognitive radio networks: Part one, International Journal of Wireless Information Networks, 24 (2017), 356-388.   Google Scholar

[6]

M. HassanG. KarmakarJ. Kamruzzaman and B. Srinivasan, Exclusive use spectrum access trading models in cognitive radio networks: A survey, Tutorials, 19 (2017), 2192-2231.   Google Scholar

[7] R. Hassin, Rational Queueing, CRC Press, New York, 2016.  doi: 10.1201/b20014.  Google Scholar
[8]

R. Hassin and M. Haviv, To Queue or not to Queue: Equilibrium Behavior in Queueing Systems, Kluwer Academic Publishers, Boston, 2003. doi: 10.1007/978-1-4615-0359-0.  Google Scholar

[9]

S. Jin, S. Chen and J. Zhang, Social optimization and pricing policy in cognitive radio networks with an energy saving strategy, Mobile Information Systems, 2016 (2016), Article ID 2426580, 10 pages. Google Scholar

[10]

H. Li and Z. Han, Socially optimal queuing control in cognitive radio networks subject to service interruptions: To queue or not to queue?, IEEE Transactions on Wireless Communications, 10 (2011), 1656-1666.   Google Scholar

[11]

M. NaeemA. AnpalaganM. Jaseemuddin and D. Lee, Resource allocation techniques in cooperative cognitive radio networks, Tutorials, 16 (2014), 729-744.   Google Scholar

[12]

S. Pandit and G. Singh, An overview of spectrum sharing techniques in cognitive radio communication system, Wireless Networks, 23 (2017), 497-518.   Google Scholar

[13]

Y. Saleem and M. Rehmani, Primary radio user activity models for cognitive radio networks: A survey, Journal of Network and Computer Applications, 43 (2014), 1-16.   Google Scholar

[14]

A. SultanaX. Fernando and L. Zhao, An overview of medium access control strategies for opportunistic spectrum access in cognitive radio networks, Peer-to-Peer Networking and Applications, 10 (2017), 1113-1141.   Google Scholar

[15]

N. Tian and G. Zhang, Vacation Queueing Models: Theory and Applications, Springer, New York, 2006.  Google Scholar

[16]

E. TragosS. ZeadallyA. Fragkiadakis and V. Siris, Spectrum assignment in cognitive radio networks: A comprehensive survey, Tutorials, 15 (2013), 1108-1135.   Google Scholar

[17]

Z. ZhangK. Long and J. Wang, Self-organization paradigms and optimization approaches for cognitive radio technologies: A survey, IEEE Wireless Communications, 20 (2013), 36-42.   Google Scholar

[18]

Y. ZhaoS. Jin and W. Yue, A novel spectrum access strategy with α-retry policy in cognitive radio networks: A queueing-based analysis, Journal of Communications and Networks, 16 (2014), 193-201.   Google Scholar

[19]

Y. Zhao and W. Yue, Performance evaluation of cognitive radio networks with a finite buffer setting for primary users, in Queueing Theory and Network Applications (eds. W. Yue, Q. Li, S. Jin and Z. Ma), Springer, (2017), 168-179. Google Scholar

[20]

Y. Zhao and W. Yue, Performance analysis and optimization of cognitive radio networks with retransmission control, Optimization Letters, 12 (2018), 1281-1300.  doi: 10.1007/s11590-017-1119-8.  Google Scholar

Figure 1.  System actions of PU packets and SU packets
Figure 2.  Average queue length $ E_{PU} $ of PU packets
Figure 3.  Throughput $ \theta_{PU} $ of PU packets
Figure 4.  Blocking rate $ \beta_{SU} $ of SU packets
Figure 5.  Average delay $ \delta_{SU} $ of SU packets
Figure 6.  Function $ F_I(\lambda_2) $ of the individual net benefit
Figure 7.  Function $ F_S(\lambda_2) $ of the social net benefit
Table 1.  Notations for the system model
Symbol Explanation
$ \lambda_1 $ Arrival rate of the PU packets
$ \lambda_2 $ Arrival rate of the SU packets
$ \mu_1 $ Transmission rate of the PU packets
$ \mu_2 $ Transmission rate of the SU packets
$ K_1 $ Capacity of the PU buffer
$ K_2 $ Capacity of the SU buffer
$ q $ Returning probability for the interrupted SU packets
$ P_n $ Number of PU packets in the system at the instant $ t=n^+ $
$ S_n $ Number of SU packets in the system at the instant $ t=n^+ $
Symbol Explanation
$ \lambda_1 $ Arrival rate of the PU packets
$ \lambda_2 $ Arrival rate of the SU packets
$ \mu_1 $ Transmission rate of the PU packets
$ \mu_2 $ Transmission rate of the SU packets
$ K_1 $ Capacity of the PU buffer
$ K_2 $ Capacity of the SU buffer
$ q $ Returning probability for the interrupted SU packets
$ P_n $ Number of PU packets in the system at the instant $ t=n^+ $
$ S_n $ Number of SU packets in the system at the instant $ t=n^+ $
Table 2.  Numerical results for the individually and socially optimal strategies
$ K_1 $ $ K_2 $ $ q $ $ \lambda_i $ $ r_i $ $ \lambda_s $ $ r_s $
min max min max
0 5 0.4 0.26 0.27 0.52 0.54 0.18 0.36
2 5 0.4 0.15 0.16 0.30 0.32 0.10 0.20
0 5 0.8 0.30 0.31 0.60 0.62 0.19 0.38
2 5 0.8 0.20 0.21 0.40 0.42 0.12 0.24
0 8 0.8 0.32 0.33 0.64 0.66 0.22 0.44
2 8 0.8 0.23 0.24 0.46 0.48 0.15 0.30
$ K_1 $ $ K_2 $ $ q $ $ \lambda_i $ $ r_i $ $ \lambda_s $ $ r_s $
min max min max
0 5 0.4 0.26 0.27 0.52 0.54 0.18 0.36
2 5 0.4 0.15 0.16 0.30 0.32 0.10 0.20
0 5 0.8 0.30 0.31 0.60 0.62 0.19 0.38
2 5 0.8 0.20 0.21 0.40 0.42 0.12 0.24
0 8 0.8 0.32 0.33 0.64 0.66 0.22 0.44
2 8 0.8 0.23 0.24 0.46 0.48 0.15 0.30
Table 3.  Numerical results for the admission fee
$ K_1 $ $ K_2 $ $ q $ $ \lambda_s $ $ f $
0 5 0.4 0.18 1.9650
2 5 0.4 0.10 1.7917
0 5 0.8 0.19 5.8778
2 5 0.8 0.12 5.4328
0 8 0.8 0.22 6.3116
2 8 0.8 0.15 5.9168
$ K_1 $ $ K_2 $ $ q $ $ \lambda_s $ $ f $
0 5 0.4 0.18 1.9650
2 5 0.4 0.10 1.7917
0 5 0.8 0.19 5.8778
2 5 0.8 0.12 5.4328
0 8 0.8 0.22 6.3116
2 8 0.8 0.15 5.9168
[1]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[2]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[3]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[4]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[5]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[6]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[7]

Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021003

[8]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[9]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[10]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[11]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[12]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[13]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[14]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[15]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[16]

Honglin Yang, Jiawu Peng. Coordinating a supply chain with demand information updating. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020181

[17]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[18]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[19]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[20]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (120)
  • HTML views (823)
  • Cited by (0)

Other articles
by authors

[Back to Top]