[1]
|
M. J. Akian, L. Menaldi and A. Sulem, Multi-asset porfolio selection problem with transaction cosats, Mathematics and Computers in Simulation, 38 (1995), 163-172.
doi: 10.1016/0378-4754(93)E0079-K.
|
[2]
|
J. Ang, F. Meng and J. Sun, Two-stage stochastic linear programs with incomplete information on uncertainty, European Journal of Operational Research, 233 (2014), 16-22.
doi: 10.1016/j.ejor.2013.07.039.
|
[3]
|
R. Bruni, F. Cesarone, A. Scozzari and F. Tardella, On exact and approximate stochastic dominance strategies for portfolio selection, European Journal of Operational Research, 259 (2017), 322-329.
doi: 10.1016/j.ejor.2016.10.006.
|
[4]
|
D. Dentcheva and A. Ruszczyński, Optimization with stochastic dominance constraints, SIAM Journal on Optimization, 14 (2003), 548-566.
doi: 10.1137/S1052623402420528.
|
[5]
|
D. Dentcheva and A. Ruszczyński, Optimality and duality theory for stochastic optimization problems with nonlinear dominance constraints, Mathematical Programming, 99 (2004), 329-350.
doi: 10.1007/s10107-003-0453-z.
|
[6]
|
D. Dentcheva and A. Ruszczyński, Portfolio optimization with stochastic dominance constraints, Journal of Banking and Finance, 30 (2006), 433-451.
|
[7]
|
J. Dupa$\check{c}$ov$\acute{a}$ and M. Kopa, Robustness of optimal portfolios under risk and stochastic dominance constraints, E.J.Oper. Res., 234 (2014), 434-441.
doi: 10.1016/j.ejor.2013.06.018.
|
[8]
|
L. F. Escudero, J. F. Monge and D. R. Morales, An SDP approach for multiperiod mixed 0-1 linear programming models with stochastic dominance constraints for risk management, Comp. Oper. Res., 58 (2015), 32-40.
doi: 10.1016/j.cor.2014.12.007.
|
[9]
|
C. I. F$\acute{a}$bi$\acute{a}$n, G. Mitra, D. Roman and V. Zverovich, An enhanced model for portfolio choice with SSD criteria: A constructive approach, Quantitative Finance, 11 (2011), 1525-1534.
doi: 10.1080/14697680903493607.
|
[10]
|
P. C. Fishburn, Decision and Value Theory, John Wiley and Sons, New York, 1964.
|
[11]
|
T. Homem-De-Mello and S. Mehrota, A cutting surface method for uncertain linear programs with polyhedral stochastic dominance constraints, SIAM Journal of Optimization, 20 (2009), 1250-1273.
doi: 10.1137/08074009X.
|
[12]
|
J. E. Hodder, J. C. Jackwerth and O. Kolokolova, Improved portfolio choice using second-order stochastic dominance, Review of Finance, 19 (2015), 1623-1647.
|
[13]
|
J. Hu, T. Homem-De-Mello and S. Mehrota, Sample average approximation of stochastic dominance constrained programs, Mathematical Programming, Series A, 133 (2012), 171-201.
doi: 10.1007/s10107-010-0428-9.
|
[14]
|
C. Jiang, Q. Lin, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty method for free terminal time optimal control problem with continuous inequality constraints, Journal of Optimization Theory and Applications, 154 (2012), 30-53.
doi: 10.1007/s10957-012-0006-9.
|
[15]
|
B. Li, C. Z. Wu, H. H. Dam, A. Cantoni and K. L. Teo, A parallel low complexity zero-forcing beamformer design for multiuser MIMO systems via a regularized dual decomposition method, IEEE Transactions on Signal Processing, 63 (2015), 4179-4190.
doi: 10.1109/TSP.2015.2437846.
|
[16]
|
B. Li, C. J. Yu, K. L. Teo and G. R. Duan, An exact penalty function method for continuous inequality constrained optimal control problem, Journal of Optimization Theory and Applications, 151 (2011), 260-291.
doi: 10.1007/s10957-011-9904-5.
|
[17]
|
B. Li, Y. Rong, J. Sun and K. L. Teo, A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
|
[18]
|
Q. Lin, R. Loxton and K. L. Teo, The control parameterization method for nonlinear optimal control: A survey, Journal of Industrial and Management Optimization, 10 (2014), 275-309.
doi: 10.3934/jimo.2014.10.275.
|
[19]
|
Y. Liu and H. Xu, Stability analysis of stochastic programs with second order dominance constraints, Mathematical Programming, 142 (2013), 435-460.
doi: 10.1007/s10107-012-0585-0.
|
[20]
|
A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, San Diego, 1979.
|
[21]
|
M. Menegatti, A note on portfolio selection and stochastic dominance, Decisions Econ. Finan., 39 (2016), 327-331.
doi: 10.1007/s10203-016-0179-z.
|
[22]
|
R. Meskarian, H. Xu and J. Fliege, Numerical methods for stochastic programs with second order dominance constraints with applications to portfolio optimization, European Journal of Operational Research, 216 (2012), 376-385.
doi: 10.1016/j.ejor.2011.07.044.
|
[23]
|
R. Meskarian, J. Fliege and H. Xu, Stochstic programming with multivariate second order stochastic dominance constraints with applications in portfolio optimization, Appl. Math. Optim., 70 (2014), 111-140.
doi: 10.1007/s00245-014-9236-6.
|
[24]
|
J. M. Peng and Z. Lin, A non-interior continuation method for generalized linear complementarity problems, Math.Program, 86 (1999), 533-563.
doi: 10.1007/s101070050104.
|
[25]
|
J. P. Quirk and R. Saposnik, Admissibility and measurable utility functions, Review of Economic Studies, 29 (1962), 140-146.
|
[26]
|
A. Shapiro, Monte Carlo sampling Methods, in:Stochastic Programming, Handbook in Operations Research and Management Science, 10 (2003), 353-425.
doi: 10.1016/S0927-0507(03)10006-0.
|
[27]
|
H. Sun, h. Xu and Y. Wang, A smoothing penalized sample average approximation method for stochastic programs with second-order stochastic dominance constraints, Asia-Pacific Journal of Operational Research, 30 (2013), 1340002, 25 pp.
doi: 10.1142/S0217595913400022.
|
[28]
|
H. Sun and H. Xu, Convergence analysis of stationary points in sample average approximation of stochastic programs with second order stochastic dominance constraints, Math. Program., Ser. A, 143 (2014), 31-59.
doi: 10.1007/s10107-013-0711-7.
|
[29]
|
X. J. Tong, L. Qi, F. Wu, et al., A smoothing method for solving portfolio optimization with CVaR and applications in allocation of generation asset, Applied Mathematics and Computation, 216 (2010), 1723–1740.
doi: 10.1016/j.amc.2009.12.031.
|
[30]
|
L. Yang, Y. Chen and X. Tong, Smoothing Newton-like method for the solution of nonlinear systems of equalities and inequalities, Numerical Mathematics: Theory, Methods and Applications, 2 (2009), 224-236.
|