Integrated process planning and scheduling (IPPS) problems are one of the most important flexible planning functions for a job shop manufacturing. In a manufacturing order to produce n jobs (parts) on m machines in a flexible manufacturing environment, an IPPS system intends to generate the process plans for all n parts and the overall job-shop schedule concurrently, with the objective of optimizing a manufacturing objective such as make-span. The optimization of the process planning and scheduling will be applied through an integrated approach based on Fuzzy Inference System (FIS), to provide for flexibilities of the given components and consider the qualitative parameters. The FIS, Constraint Programming (CP) and Simulated Annealing (SA) algorithms are applied in this design. The objectives of the proposed model consist of maximization of processes utility, minimization of make-span and total production costs including costs of flexible tools, machines, process and TADs. The proposed approach indicates that The CP and SA algorithms are able to resolve the IPPS problem with multiple objective functions. The experiments and related results indicate that the CP method outperforms the SA algorithm.
Citation: |
Table 1. Inputs of fuzzy inference systems
Table 2. Output of fuzzy inference systems
Table 3. The Goal Programming Formulation of the IPPS Problem
Parameters |
$p$: Part indicator, $p=1, \ldots, PNo$ |
$O^p$: The set indicating operations of $p^{th}$ part |
$i$: Operation indicator, $i\in O^p$, $p=1, \ldots, PNo$ |
d: TAD indicator |
t: Tool indicator |
m: machine indicator |
$Machine_i$ : The set indicating machine candidates of the $i^{th}$ operation |
$TAD_i$: The set indicating TAD candidates of the $i^{th}$ operation |
$Tool_i$: The set indicating tool candidates of the $i^{th}$ operation |
$MC_m$: The cost of using $m^{th}$ machine per operation |
$TC_t$: The cost of using $i^{th}$ tool per operation |
$MFE_{m_k m_l}$: The rate of Material Flow Ease between machines $m_k$ and $m_l$ |
$PE_{m_k m_l}$: The rate of Production Ease between machines $m_k$ and $m_l$ |
Decision Variables |
$operation_{imtd}^p = \left\{ \begin{array}{l} 1\;\;{\rm{If the}}\;{i^{th}}\;{\rm{operation}}\;{\rm{of}}\;{\rm{part}}\;p\;{\rm{is}}\;{\rm{done}}\;{\rm{in}}\;{m^{th}}\;{\rm{machine}}\\ \;\;\;{\rm{with}}\;{t^{th}}\;{\rm{tool}}\;{\rm{and}}\;{d^{th}}\;{\rm{TAD}}\\ {\rm{0}}\;\;{\rm{Otherwise}} \end{array} \right.$ |
$part_{ij}^p = \left\{ \begin{array}{l} 1\;\;{\rm{If}}\;{\rm{the}}\;{j^{th}}\;{\rm{operation}}\;{\rm{of}}\;{\rm{part}}\;p\;{\rm{is}}\;{\rm{done}}\;{\rm{immediately}}\;{\rm{after}}\\ \;\;\;\;{\rm{the}}\;{i^{th}}\;{\rm{operation}}\;{\rm{of}}\;{\rm{part}}\;p\\ 0\;\;{\rm{Otherwise}} \end{array} \right.$ |
$\begin{array}{l} time_i^p{\rm{ = Cumulative}}\;{\rm{time}}\;{\rm{of}}\;{\rm{operations}}\;{\rm{of}}\;{\rm{part}}\;p\;{\rm{completed}}\;{\rm{until}}\;{\rm{the}}\\ \;\;\;\;\;\;\;\;\;\;{\rm{completion}}\;{\rm{of}}\;{\rm{the}}\;{i^{th}}\;{\rm{operation}} \end{array}$ |
$O{M_i}{\rm{ = The}}\;{i^{th}}\;{\rm{operation}}\;{\rm{machine, }}\;O{M_i} \in Machin{e_i}$ |
$O{T_i}{\rm{ = The}}\;{i^{th}}\;{\rm{operation}}\;TAD{\rm{, }}\;O{T_i} \in TA{D_i}$ |
Proposed Goal Programming Model: |
$Min\ D =\displaystyle \left( {{w_1} \times {\rm{ }}\frac{{{d_1}^ - }}{{{G_{TWC}}}}} \right) + \left( {{w_2} \times {\rm{ }}\frac{{{d_2}^ - }}{{{G_{MakeSpan}}}}} \right) + \left( {{w_3} \times {\rm{ }}\frac{{{d_3}^ + }}{{{G_U}}}} \right)~~~~~~~~~~~(1)$ |
$ Subject$ $to: $ |
$TWC = \sum\limits_{i \in {O^p}}^{} {\sum\limits_{m \in Machin{e_i}} {\sum\limits_{t \in Too{l_i}} {\sum\limits_{d \in TA{D_i}} {operation_{_{imtd}}^p.(M{C_{O{M_i}}} + T{C_{O{T_i}}}} } )} } ~~~~(2)$ |
$MakeSpan = \mathop {\max }\limits_{\scriptstyle\, \, \, \, \, \, \, i \in {O^p}\atop \scriptstyle p = 1, ..., PNo} (time_{_i}^p)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(3)$ |
$U = \sum\limits_{p = 1}^{PNo} {\sum\limits_{i, j \in {O^p}/part_{_{ij}}^p = 1}^{} {(ME{F_{O{M_i}, O{M_j}}} + P{E_{O{M_i}, O{M_j}}})} }~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(4)$ |
$TWC - d_1^ - \le {G_{TWC}}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(5)$ |
$MakeSpan - d_2^ - \le {G_{MakeSpan}}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(6)$ |
$U + d_3^ + \ge {G_U}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(7)$ |
$d_1^ -, d_2^ -, d_3^ + \ge 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(8)$ |
Table 4. Sources Specifications
The cost peroperation(MC) | Symbol | Source |
50 | M1 | CNC milling machine 1 |
60 | M2 | CNC milling machine 2 |
30 | M3 | Grinding CNC machine |
35 | M4 | Column drilling equipment |
20 | M5 | Hand drilling equipment |
20 | M6 | Grinding machine |
The cost per operation(TC) | Symbol | Resource |
6 | T1 | Drill 1 |
5 | T2 | Drill 2 |
10 | T3 | Drill 3 |
15 | T4 | Drill 4 |
13 | T5 | Drill 5 |
14 | T6 | Drill 6 |
8 | T7 | Drill 7 |
10 | T8 | Drill 8 |
5 | T9 | Drill 9 |
10 | T10 | Polishers |
15 | T11 | Reamer 1 |
20 | T12 | Reamer 2 |
18 | T13 | Reamer 3 |
15 | T14 | Diamond blades |
18 | T15 | Milling plate |
13 | T16 | Spark |
24 | T17 | Magnetic stone |
Table 5. Technical Specifications of Part 1
Features | Index | Operation | TAD candidate | Machine candidate | Tool candidate | Machining time for each candidate machine (s) |
F1 | Oper1 | Milling | -Z | M1, M2 | T14, T15, T16, T17 | 40, 38 |
F2 | Oper2 | Milling | +Z | M1, M2 | T14, T15, T16, T17 | 37, 38 |
F3 | Oper3 | Milling | -Z, -Y | M1, M2 | T14, T15, T16, T17 | 41, 43 |
F4 | Oper4 | Milling | +Y, -Z | M1, M2 | T14, T15, T16, T17 | 31, 30 |
F5 | Oper5 | Boring | +Y, -Y | M6 | T10 | 40 |
F6 | Oper6 | Drilling | -Z | M3, M4, M5 | T1 | 40, 50, 30 |
Oper7 | Reaming | -Z | M3, M4, M5 | T11 | 40, 50, 30 | |
F7 | Oper8 | Ribbing | -Z, -Y | M1, M2 | T14, T15, T16, T17 | 54, 52 |
F8 | Oper9 | Drilling | +X, -X | M3, M4, M5 | t2 | 20, 30, 21 |
F9 | Oper10 | Drilling | +X, -X | M3, M4, M5 | t3 | 50, 60, 40 |
F10 | Oper11 | Drilling | +Y | M3, M4, M5 | t4 | 60, 50, 30 |
Oper12 | reaming | +Y | M3, M4, M5 | T12 | 60, 50, 30 | |
F11 | Oper13 | Boring | A | M6 | T10 | 50 |
Table 6. Technical Specifications of Part 2
Features | Index | operation | TAD candidate | Machine candidate | Tool candidate | Machining time for each candidate machine (s) |
F1 | oper1 | Milling | -Y | M1, M2 | T14, T15, T16, T17 | 30, 20 |
F2 | oper2 | milling | +Z | M1, M2 | T14, T15, T16, T17 | 35, 29 |
F3 | oper3 | milling | -Y, -Y | M1, M2 | T14, T15, T16, T17 | 29, 24 |
F4 | oper4 | drilling | +Z, -Z | M3, M4, M5 | T4 | 57, 66, 51 |
F5 | oper5 | reaming | +X | M3, M4, M5 | T5 | 41, 59, 38 |
oper6 | drilling | +X | M3, M4, M5 | T13 | 52, 71, 41 | |
F6 | oper7 | reaming | -Y, +Y | M3, M4, M5 | t6 | 30, 41, 28 |
F7 | oper8 | ribbing | -Z, +Z, -X | M1, M2 | T14, T15, T16, T17 | 47, 49 |
F8 | oper9 | milling | A | M1, M2 | T14, T15, T16, T17 | 40, 41 |
F9 | oper10 | boring | +X, -X, +Y, -Y | m6 | T10 | 40 |
Table 7. Technical Specifications of Part 3
Features | Index | operation | TAD candidate | Machine candidate | Tool candidate | Machining time for each candidate machine (s) |
F1 | oper1 | Milling | -Y, -X | M1, M2 | T14, T15, T16, T17 | 30, 35 |
F2 | oper2 | Milling | +Z, +Z | M1, M2 | T14, T15, T16, T17 | 28, 30 |
F3 | oper3 | Milling | +Z, +Y | M1, M2 | T14, T15, T16, T17 | 33, 30 |
F4 | oper4 | Milling | +X, -X | M1, M2 | T14, T15, T16, T17 | 29, 25 |
F5 | oper5 | Milling | +X, -X | M1, M2 | T14, T15, T16, T17 | 37, 31 |
F6 | oper6 | Drilling | -Z, +Z | M3, M4, M5 | T9 | 50, 60, 40 |
F7 | oper7 | Milling | -Z | M1, M2 | T14, T15, T16, T17 | 40, 39 |
F8 | ooper8 | Drilling | -Z | M3, M4, M5 | T8 | 39, 50, 38 |
Table 8. Precedence Relations of Part 1
Precedence relations |
Oper1 is first operation. Oper2 is prior to Oper4, Oper5, Oper11 and Oper12. Oper3 is prior to Oper4, Oper5 and Oper10. Oper6 is prior to Oper7, Oper11 and Oper12. Oper8 is prior to Oper13. Oper9 is prior to Oper13. Oper11 is prior to Oper12. |
Table 9. Precedence Relations of Part 2
Precedence relations |
Oper1 is first operation Oper2 is prior to Oper7, Oper9. Oper3 is prior to Oper5, Oper9. Oper4 is prior to Oper5, Oper6. Oper5 is prior to Oper6. Oper7 is prior to Oper8, Oper10. Oper8 is prior to Oper10. |
Table 10. Precedence Relations of Part 3
Precedence relations |
Oper1 is first operation. Oper2 is prior to Oper4, Oper5. Oper3 is prior to Oper4, Oper5. Oper4 is prior to Oper5, Oper6. Oper5 is prior to Oper6. Oper7 is prior to Oper8. |
Table 11. Rules of Material Flow FIS on Distance and Trans-portation Ease Parameters
Ease in material displacement in different machines | ||||||
VL | L | M | H | VH | ||
Distance between installed machines | VH | X | X | X | U | U |
H | X | U | U | O | O | |
M | U | U | O | I | I | |
L | U | O | I | E | A | |
VL | U | O | I | A | A |
Table 12. Score of Pair Machines Based on Material Flow FIS
Ease in material flow | M1 | M2 | M3 | M4 | M5 | M6 |
M1 | 5.69 | 2.74 | 5.69 | 2.00 | 1.50 | 1.50 |
M2 | 3.74 | 5.69 | 2.56 | 3.00 | 4.37 | 1.50 |
M3 | 4.50 | 4.37 | 5.69 | 1.20 | 0.37 | 1.50 |
M4 | 1.50 | 1.50 | 1.20 | 5.69 | 2.50 | 1.20 |
M5 | 1.20 | 2.56 | 1.50 | 1.50 | 5.69 | 2.56 |
M6 | 1.50 | 2.00 | 1.50 | 1.20 | 3.56 | 5.69 |
Table 13. Rules of Production Ease FIS on Setup Ease and Compatibility Parameters
Compatibility | ||||||
VL | L | M/ | H | VH | ||
Setup Ease | VL | X | X | X | U | U |
L | X | U | U | O | O | |
M | U | U | O | I | I | |
H | U | O | I | E | A | |
VH | U | O | I | A | A |
Table 14. Score of Each Pair Machines Based on ease in production FIS
Ease in production | M1 | M2 | M3 | M4 | M5 | M6 |
M1 | 5.69 | 1.50 | 2.50 | 4.00 | 3.00 | 1.50 |
M2 | 4.23 | 5.69 | 3.00 | 5.69 | 3.00 | 1.50 |
M3 | 3.00 | 3.00 | 5.69 | 3.00 | 5.63 | 2.50 |
M4 | 2.50 | 2.50 | 1.50 | 5.69 | 2.50 | 1.50 |
M5 | 2.50 | 4.00 | 1.50 | 1.50 | 5.69 | 3.00 |
M6 | 3.00 | 3.00 | 3.50 | 3.50 | 3.00 | 5.69 |
Table 15. Goals and Weights of Objectives
Objective Function | Goal | Weight |
TWC | $1484$ | 1 |
Make Span | $468$ | 2 |
Utility | $288.24$ | 3 |
Table 16. The Parameters of SA Algorithm
Parameters | |
The number of initial population $= 20$ | The iterations time $= 300 s$ |
The number of neighborhood $= 10$ | Alpha $= 0.99$ |
Table 17. The optional list of Positions of Operations of Parts
Position | Parts | Operations | Position | Parts | Operations | |
1 | 1 | 1 | 17 | 2 | 4 | |
2 | 1 | 2 | 18 | 2 | 5 | |
3 | 1 | 3 | 19 | 2 | 6 | |
4 | 1 | 4 | 20 | 2 | 7 | |
5 | 1 | 5 | 21 | 2 | 8 | |
6 | 1 | 6 | 22 | 2 | 9 | |
7 | 1 | 7 | 23 | 2 | 10 | |
8 | 1 | 8 | 24 | 3 | 1 | |
9 | 1 | 9 | 25 | 3 | 2 | |
10 | 1 | 10 | 26 | 3 | 3 | |
11 | 1 | 11 | 27 | 3 | 4 | |
12 | 1 | 12 | 28 | 3 | 5 | |
13 | 1 | 13 | 29 | 3 | 6 | |
14 | 2 | 1 | 30 | 3 | 7 | |
15 | 2 | 2 | 31 | 3 | 8 | |
16 | 2 | 3 |
Table 18. Solution of SA algorithm
Random Position | Considering the Precedence relations | Feasible Position | Parts | Operations | Machines | Tools | TAD |
17 | 14 | 2 | 1 | 2 | 14 | -Z | |
5 | 17 | 2 | 4 | 1 | 15 | Z | |
3 | 16 | 2 | 3 | 2 | 16 | -Y | |
10 | 18 | 2 | 5 | 1 | 16 | -Z | |
2 | 19 | 2 | 6 | 6 | 10 | Y | |
31 | 15 | 2 | 2 | 4 | 1 | -Z | |
12 | 20 | 2 | 7 | 4 | 11 | -Z | |
19 | 21 | 2 | 8 | 2 | 16 | -Z | |
9 | 23 | 2 | 10 | 4 | 2 | X | |
27 | 24 | 3 | 1 | 5 | 3 | -X | |
21 | 26 | 3 | 3 | 3 | 4 | Y | |
18 | 30 | 3 | 7 | 5 | 12 | Y | |
14 | 31 | 3 | 8 | 6 | 10 | A | |
6 | 25 | 3 | 2 | 2 | 15 | -Y | |
13 | 27 | 3 | 4 | 1 | 17 | Z | |
4 | 28 | 3 | 5 | 2 | 15 | -Y | |
26 | 29 | 3 | 6 | 3 | 4 | Z | |
30 | 22 | 2 | 9 | 4 | 5 | X | |
7 | 1 | 1 | 1 | 5 | 13 | X | |
20 | 3 | 1 | 3 | 4 | 6 | -Y | |
16 | 10 | 1 | 10 | 2 | 17 | -Z | |
28 | 2 | 1 | 2 | 1 | 16 | A | |
8 | 5 | 1 | 5 | 6 | 10 | -X | |
25 | 9 | 1 | 9 | 2 | 15 | -Y | |
23 | 6 | 1 | 6 | 2 | 14 | X | |
29 | 4 | 1 | 4 | 2 | 17 | z | |
15 | 7 | 1 | 7 | 2 | 17 | X | |
24 | 8 | 1 | 8 | 2 | 16 | X | |
22 | 13 | 1 | 13 | 3 | 9 | z | |
1 | 11 | 1 | 11 | 2 | 14 | -Z | |
11 | 12 | 1 | 12 | 5 | 8 | -Z |
Table 19.
Description of the
$ID$ | Exclusive number of each member of the tuples |
$PartNo$ | The number of the parts |
$OperationNo$ | The number of operations necessary for part processing |
$\{TADNo\}$ | The set of TAD candidates |
$\{ToolNo\}$ | The set of tool candidates |
$\{MachineNo\}$ | The set of machine candidates |
$\{pTime\}$ | The set of Machining time for each candidate machine (s) |
$\{Succs\}$ | The set of successor operations |
Table 20.
Description of the
$task$ | A tuple type data represent the Task which the Mode is derived from |
$PartNo$ | Indicates the number of the parts which equal to $task.Part.No$ |
$OperationNo$ | Indicates the number of the operations in one part which equals to $task.Operation.No$ |
$TADNo$ | Indicates the number of TADs which is a member of $task.\{TAD.No\}$ |
$ToolNo$ | Indicates the number of tools which are the members of $task.\{Tool.No\}$ |
$MachineNo$ | Indicates the number of machines which are a member of $task.\{Machine.No\}$ |
$pTime$ | Indicates the machining time for $Machine_{Machine.No}$ |
Table 21. he Best Solutions of SA algorithm
Part | Operation | Machine | TAD | Tool | Start Time | Machining Time | Finish Time |
1 | 1 | 2 | -3 | 16 | 0 | 38 | 38 |
1 | 2 | 1 | 3 | 14 | 100 | 37 | 137 |
1 | 3 | 1 | -3 | 14 | 59 | 41 | 100 |
1 | 4 | 1 | 2 | 16 | 323 | 31 | 354 |
1 | 5 | 6 | -2 | 10 | 394 | 40 | 434 |
1 | 6 | 5 | -3 | 1 | 139 | 30 | 169 |
1 | 7 | 3 | -3 | 11 | 169 | 40 | 209 |
1 | 8 | 1 | -3 | 16 | 269 | 54 | 323 |
1 | 9 | 5 | 1 | 2 | 38 | 21 | 59 |
1 | 10 | 5 | 1 | 3 | 354 | 40 | 394 |
1 | 11 | 5 | 2 | 4 | 209 | 30 | 239 |
1 | 12 | 5 | 2 | 12 | 239 | 30 | 269 |
1 | 13 | 6 | 4 | 10 | 434 | 50 | 484 |
2 | 1 | 2 | -2 | 16 | 38 | 20 | 58 |
2 | 2 | 2 | 3 | 15 | 82 | 29 | 111 |
2 | 3 | 2 | -3 | 16 | 58 | 24 | 82 |
2 | 4 | 4 | -1 | 4 | 269 | 66 | 335 |
2 | 5 | 4 | 1 | 5 | 335 | 59 | 394 |
2 | 6 | 5 | 1 | 13 | 394 | 41 | 435 |
2 | 7 | 5 | -2 | 6 | 111 | 28 | 139 |
2 | 8 | 2 | 3 | 14 | 180 | 49 | 229 |
2 | 9 | 2 | 4 | 16 | 139 | 41 | 180 |
2 | 10 | 6 | 1 | 10 | 229 | 40 | 269 |
3 | 1 | 1 | -2 | 14 | 0 | 30 | 30 |
3 | 2 | 2 | 3 | 14 | 298 | 30 | 328 |
3 | 3 | 2 | 3 | 14 | 229 | 30 | 259 |
3 | 4 | 1 | -1 | 17 | 354 | 29 | 383 |
3 | 5 | 2 | 1 | 14 | 383 | 31 | 414 |
3 | 6 | 5 | -3 | 9 | 453 | 40 | 493 |
3 | 7 | 2 | -3 | 15 | 259 | 39 | 298 |
3 | 8 | 3 | -3 | 8 | 414 | 39 | 453 |
Table 22. The Best Solution obtained through CP
Part | Operation | Machine | TAD | Tool | Start Time | Machining Time | Finish Time |
1 | 1 | 2 | -3 | 16 | 0 | 38 | 38 |
1 | 2 | 2 | 3 | 16 | 38 | 37 | 75 |
1 | 3 | 1 | -3 | 16 | 75 | 41 | 116 |
1 | 8 | 1 | -3 | 16 | 116 | 52 | 168 |
1 | 10 | 3 | 1 | 3 | 168 | 40 | 208 |
1 | 6 | 5 | -3 | 1 | 208 | 30 | 238 |
1 | 9 | 5 | -1 | 2 | 238 | 20 | 258 |
1 | 11 | 5 | 2 | 4 | 258 | 30 | 288 |
1 | 7 | 5 | -3 | 11 | 288 | 30 | 318 |
1 | 13 | 6 | 4 | 10 | 318 | 50 | 368 |
1 | 5 | 6 | 2 | 10 | 368 | 40 | 408 |
1 | 12 | 5 | 2 | 12 | 408 | 30 | 438 |
1 | 4 | 1 | -3 | 16 | 438 | 30 | 468 |
2 | 1 | 1 | -2 | 16 | 0 | 20 | 20 |
2 | 3 | 1 | -3 | 16 | 20 | 24 | 44 |
2 | 2 | 1 | 3 | 16 | 44 | 29 | 73 |
2 | 4 | 5 | 3 | 4 | 73 | 51 | 124 |
2 | 5 | 5 | 1 | 5 | 124 | 38 | 162 |
2 | 6 | 5 | 1 | 13 | 162 | 41 | 203 |
2 | 7 | 5 | 2 | 6 | 318 | 28 | 346 |
2 | 8 | 1 | -3 | 16 | 351 | 47 | 398 |
2 | 9 | 1 | 4 | 16 | 398 | 40 | 438 |
2 | 10 | 6 | 1 | 10 | 438 | 40 | 478 |
3 | 1 | 1 | -2 | 16 | 168 | 30 | 198 |
3 | 7 | 1 | -3 | 16 | 198 | 39 | 237 |
3 | 2 | 1 | 1 | 16 | 237 | 28 | 265 |
3 | 3 | 1 | 3 | 16 | 265 | 30 | 295 |
3 | 4 | 1 | 1 | 16 | 295 | 25 | 320 |
3 | 5 | 1 | -1 | 16 | 320 | 31 | 351 |
3 | 6 | 5 | -3 | 9 | 351 | 40 | 391 |
3 | 8 | 5 | -3 | 8 | 438 | 38 | 476 |
Table 23. Results of SA and CP Algorithm
Objective | TWC | Make Span | Utility | Time (Sec) |
Max(Min) Function | Min | Min | Max | |
Goal | 1484 | 468 | 288 | |
CP | 1514 | 478 | 258.3761 | 300 |
SA | 1669 | 493 | 87.30202 | 300 |
[1] | A. Akgun, E. A. Sezer, H. A. Nefeslioglu, C. Gokceoglu and B. Pradhan, An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm, Computers & Geosciences, 38 (2012), 23-34. doi: 10.1016/j.cageo.2011.04.012. |
[2] | IBM, IBM ILOG CPLEX Optimization Studio 12.5 User's Manual, 2012. |
[3] | S. Kirkpatrick, C. Gelatt and M. Vecchi, Optimization by simulated annealing, Science, New Series, 220 (1983), 671-680. doi: 10.1126/science.220.4598.671. |
[4] | X. Li, L. Gao, X Shao and C. Wang, Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling, Computers & Operations Research, 37 (2010), 656-667. doi: 10.1016/j.cor.2009.06.008. |
[5] | W. Li and C. A. McMahon, A simulated annealing-based optimization approach for integrated process planning and scheduling, International Journal of Computer Integrated Manufacturing, 20 (2007), 80-95. doi: 10.1080/09511920600667366. |
[6] | K. Lian, et al., Optimization of process planning with various flexibilities using an imperialist competitive algorithm, The International Journal of Advanced Manufacturing Technology, 59 (2012), 815-828. doi: 10.1007/s00170-011-3527-8. |
[7] | J. Lin, M. Liu, J. Hao and S. Jiang, A multi-objective optimization approach for integrated production planning under interval uncertainties in the steel industry, Computers & Operations Research, 72 (2016), 189-203. doi: 10.1016/j.cor.2016.03.002. |
[8] | T. Majozi and X. Zhu, A combined fuzzy set theory and MILP approach in integration of planning and scheduling of batch plants-Personnel evaluation and allocation, Computers & Chemical Engineering, 29 (2005), 2029-2047. doi: 10.1016/j.compchemeng.2004.07.038. |
[9] | X. N. Shen and X. Yao, Mathematical modeling and multi-objective evolutionary algorithms applied to dynamic flexible job shop scheduling problems, Information Science, 298 (2015), 198-224. doi: 10.1016/j.ins.2014.11.036. |
[10] | J. M. Usher and K. J. Fernandes, Dynamic process planning-The staticphase, Journal of Materials Processing Technology, 61 (1996), 53-58. |
[11] | S.-y. Wan, Integrated Process Planning and Scheduling with Setup Time Consideration by Ant Colony Optimization, HKU Theses Online (HKUTO), 2012. doi: 10.5353/th_b4961807. |
[12] | Y. Wang, A PSO-based multi-objective optimization approach to the integration of process planning and scheduling, in Control and Automation (ICCA), 8th IEEE International Conference on IEEE, eds. Y. Zhang and J. Y. H. Fuh, 2010. doi: 10.1109/ICCA.2010.5524365. |
[13] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X. |
[14] | L. Zhang and T. Wong, Solving integrated process planning and scheduling problem with constructive meta-heuristics, Information Sciences, 340/341 (2016), 1-16. doi: 10.1016/j.ins.2016.01.001. |
[15] | L. Zhang and T. Wong, An object-coding genetic algorithm for integrated process planning and scheduling, European Journal of Operational Research, 244 (2015), 434-444. doi: 10.1016/j.ejor.2015.01.032. |
[16] | W. Zhanjie, The research about integration of process planning and production scheduling based on genetic algorithm, in Computer Science and Software Engineering, International Conference on IEEE, eds.T. Ju, 2008. doi: 10.1109/CSSE.2008.845. |
The flowchart of the proposed process planningscheduling techniques
Structure of the Material Flow FIS
Structure of the Production Ease FIS
The Flowchart of SA Algorithm
Pseudo-Code of SA Algorithm
Parts Operations Sequence in SA solution
Machines Operations Sequence in SA solution
Machines operations sequence in CP
Parts Operations Sequence in CP