In this paper, the Clarke generalized Jacobian of the generalized regularized gap function for a nonmonotone Ky Fan inequality is studied. Then, based on the Clarke generalized Jacobian, we derive a global error bound for the nonmonotone Ky Fan inequalities. Finally, an application is given to provide a descent method.
Citation: |
[1] | G. Auchmuty, Variational principles for variational inequalities, Numer. Funct. Anal. Optim., 10 (1989), 863-874. doi: 10.1080/01630568908816335. |
[2] | G. Bigi, M. Castellani and M. Pappalardo, A new solution method for equilibrium problems, Optim. Methods Softw., 24 (2009), 895-911. doi: 10.1080/10556780902855620. |
[3] | G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Existence and solution methods for equilibria, European J. Oper. Res., 227 (2013), 1-11. doi: 10.1016/j.ejor.2012.11.037. |
[4] | E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123-145. |
[5] | O. Chadli, I. V. Konnov and J. C. Yao, Descent methods for equilibrium problems in a Banach space, Comput. Math. Appl., 48 (2004), 609-616. doi: 10.1016/j.camwa.2003.05.011. |
[6] | O. Chadli and S. Schaible, Regularized equilibrium problems with application to noncoercive hemivariational inequalities, J. Optim. Theory Appl., 121 (2004), 571-596. doi: 10.1023/B:JOTA.0000037604.96151.26. |
[7] | O. Chadli, Z. H. Liu and J. C. Yao, Applications of equilibrium problems to a class of noncoercive variational inequalities, J. Optim. Theory Appl., 132 (2007), 89-110. doi: 10.1007/s10957-006-9072-1. |
[8] | C. Charitha, A note on D-gap functions for equilibrium problems, Optimization, 62 (2013), 211-226. doi: 10.1080/02331934.2011.583987. |
[9] | F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983. |
[10] | F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer, Berlin Helidelberg, New York, 2003. |
[11] | K. Fan, A minimax inequality and applications: Inequality Ⅲ, Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin, Academic Press, New York, (1972), 103–113. |
[12] | M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program., 53 (1992), 99-110. doi: 10.1007/BF01585696. |
[13] | F. Giannessi, A. Maugeri and P. M. Pardalos, Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models, Nonconvex Optimization and its Applications, 58. Kluwer Academic Publishers, Dordrecht, 2001. doi: 10.1007/0-306-48026-3_12. |
[14] | L. R. Huang and K. F. Ng, Equivalent optimization formulations and error bounds for variational inequality problems, J. Optim. Theory Appl., 125 (2005), 299-314. doi: 10.1007/s10957-004-1839-7. |
[15] | A. N. Iusem and W. Sosa, New existence results for equilibrium problems, Nonlinear Anal., 52 (2003), 621-635. doi: 10.1016/S0362-546X(02)00154-2. |
[16] | H. Y. Jiang and L. Q. Qi, Local uniqueness and convergence of iterative methods for nonsmooth variational inequalities, J. Math. Anal. Appl., 196 (1995), 314-331. doi: 10.1006/jmaa.1995.1412. |
[17] | I. V. Konnov and M. S. S. Ali, Descent methods for monotone equilibrium problems in Banach spaces, J. Comput. Appl. Math., 188 (2006), 165-179. doi: 10.1016/j.cam.2005.04.004. |
[18] | I. V. Konnov and O. V. Pinyagina, D-gap functions for a class of equilibrium problems in Banach spaces, Comput. Methods Appl. Math., 3 (2003), 274-286. doi: 10.2478/cmam-2003-0018. |
[19] | I. V. Konnov, Combined relaxation method for monotone equilibrium problems, J. Optim. Theory Appl., 111 (2001), 327-340. doi: 10.1023/A:1011930301552. |
[20] | Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics. Springer-Verlag, New York, 1998. |
[21] | G. Li and K. F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems, SIAM J. Optim., 20 (2009), 667-690. doi: 10.1137/070696283. |
[22] | G. Li, C. Tang and Z. Wei, Error bound results for generalized D-gap functions of nonsmooth variational inequality problems, J. Comput. Appl. Math., 233 (2010), 2795-2806. doi: 10.1016/j.cam.2009.11.025. |
[23] | G. Mastroeni, On auxiliary principle for equilibrium problems, In: Daniele, P., Giannessi, F., Maugeri, A. (eds.): Equilibrium Problems and Variational Models, Kluwer Academic Publishers, Dordrecht, 68(2003), 289-298. doi: 10.1007/978-1-4613-0239-1_15. |
[24] | G. Mastroeni, Gap functions for equilibrium problems, J. Glob. Optim., 27 (2003), 411-426. doi: 10.1023/A:1026050425030. |
[25] | L. D. Muu and T. D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model, J. Optim. Theory Appl., 142 (2009), 185-204. doi: 10.1007/s10957-009-9529-0. |
[26] | M. A. Noor and W. Oettli, On general nonlinear complementarity problems and quasi-equilibria, Le Matematiche (Catania), 49 (1994), 313-331. |
[27] | M. A. Noor, Auxiliary principle technique for equilibrium problems, J. Optim. Theory Appl., 122 (2004), 371-386. doi: 10.1023/B:JOTA.0000042526.24671.b2. |
[28] | J. M. Peng, Equivalence of variational inequality problems to unconstrained optimization, Math. Program., 78 (1997), 347-355. doi: 10.1007/BF02614360. |
[29] | H. Rademacher, Über partielle und totale differenzierbarkeit von Funktionen mehrerer Variabeln und Über die Transformation der Doppelintegrale, Math. Ann., 79 (1919), 340-359. doi: 10.1007/BF01498415. |
[30] | L. C. Zeng and J. C. Yao, Modified combined relaxation method for general monotone equilibrium problems in Hilbert spaces, J. Optim. Theory Appl., 131 (2006), 469-483. doi: 10.1007/s10957-006-9162-0. |
[31] | L. P. Zhang and J. Y. Han, Unconstrained optimization reformulations of equilibrium problems, Acta Math. Sin. (Engl. Ser.), 25 (2009), 343-354. doi: 10.1007/s10114-008-7096-1. |
[32] | L. P. Zhang and S. Y. Wu, An algorithm based on the generalized D-gap function for equilibrium problems, J. Comput. Appl. Math., 231 (2009), 403-411. doi: 10.1016/j.cam.2009.03.006. |