\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Delayed payment policy in multi-product single-machine economic production quantity model with repair failure and partial backordering

  • * Corresponding author: bsbiswajitsarkar@gmail.com (Biswajit Sarkar), Phone Number-+82-10-7498-1981, Office Phone: +82-31-400-5259, Fax: +82-31-436-8146

    * Corresponding author: bsbiswajitsarkar@gmail.com (Biswajit Sarkar), Phone Number-+82-10-7498-1981, Office Phone: +82-31-400-5259, Fax: +82-31-436-8146 
Abstract / Introduction Full Text(HTML) Figure(4) / Table(7) Related Papers Cited by
  • This study develops a single-machine manufacturing system for multi-product with defective items and delayed payment policy. Contradictory to the literature limited production capacity and partial backlogging are considered for more realistic result. The objective of this research is to obtain the optimal cycle length, optimal production quantity, and optimal backorder quantity of each product such that the expected total cost is minimum. The model is solved analytically. Three efficient lemmas are developed to obtain the global optimum solution of the model. An improved algorithm is designed to obtain the numerical solution of the model. An illustrative numerical example and sensitivity analysis are provided to show the practical usage of proposed method.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Graphical representation of inventory system

    Figure 2.  Graphical representation of interest earned and interest charged for $ M<t_a $

    Figure 3.  Graphical representation of interest earned and interest charged for $ t_d \leq M < t_a $

    Figure 4.  Graphical representation of interest earned and interest charged for $ M \geq t_d $

    Table 1.  Author(s) contribution Table

    Author(s) EPQ Imperfect Production Multi-product Single machine Delay-in-payment Backorder Repair
    C$ \acute{a} $rdenas-Barr$ \acute{o} $net al. [2] $ \surd $ $ \surd $
    Chiu et al. [4] $ \surd $ $ \surd $ $ \surd $
    Goyal and C$ \acute{a} $rdenas-Barr$ \acute{o} $n [8] $ \surd $ $ \surd $
    Huang [9] $ \surd $
    Taleizadeh [38] $ \surd $ $ \surd $
    Sana et al.[21] $ \surd $ $ \surd $ $ \surd $
    Li et al.[12] $ \surd $ $ \surd $
    Taleizadh et al. [48] $ \surd $ $ \surd $ $ \surd $ $ \surd $
    Sarkar et al. [25] $ \surd $ $ \surd $ $ \surd $ $ \surd $
    Kang et al. [10] $ \surd $ $ \surd $ $ \surd $
    Ouyang et al. [16] $ \surd $
    This Model $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \surd $ $ \surd $
     | Show Table
    DownLoad: CSV

    Table 2.  The values of the parameters

    $ P $ $ P_i $ $ P_i^1 $ $ \lambda_i $ $ K_i $ $ C_i $ $ C_R^i $ $ b_i $ $ h_i $
    1 10000 600 2000 750 2 0.5 0.25 0.2
    2 10500 650 1500 700 1.5 0.6 0.5 0.15
    3 11000 750 1000 650 1 0.7 0.75 0.1
     | Show Table
    DownLoad: CSV

    Table 3.  The parametric values

    $P$ $M_j$ $I_c$ $I_e$ $S_i$ $v_i$ $SE_i$ $X_i$
    1 0.04 0.09 0.05 4 1.5 0.003 0.05
    2 0.04 0.09 0.05 3 1 0.004 0.075
    3 0.04 0.09 0.05 2 0.5 0.005 0.1
     | Show Table
    DownLoad: CSV

    Table 4.  Optimal solutions table

    $P$ $T_{Min}$ $T$ $T^*=T_1$ $Q_i$ $B_i$ $Z$
    1 5158 2331.9
    2 0.128 2.579 2.579 3868.5 1061 9046.93
    3 2579 375.7
     | Show Table
    DownLoad: CSV

    Table 5.  Optimal solutions for different values of $ M $

    $ M $ $ T_{Min} $ $ T $ $ T^* $ $ Q_i $ $ B_i $ $ Z^*=Z_1 $
    5159 2332
    0.03 0.128 2.579 2.579 3869 1061 9051.666
    2579 376
    5158 2331.9
    0.04 0.128 2.579 2.579 3868.5 1061 9046.93
    2579 375.7
    5157 2331.5
    0.05 0.128 2.578 2.578 3868 1061 9042.125
    2578.6 375.5
    51555 2330
    0.06 0.128 2.577 2.577 3866 1060 9037.253
    2577 375
     | Show Table
    DownLoad: CSV

    Table 6.  Optimal solutions for different values of $ I_c $

    $ I_c $ $ T_{Min} $ $ T $ $ T^* $ $ Q_i $ $ B_i $ $ Z^*=Z_1 $
    5354.9 2323.3
    0.07 0.128 2.67 2.67 4016.2 1037.7 8990.8
    2677.5 367.2
    5158 2331.9
    0.09 0.128 2.579 2.579 3868.5 1061 9046.93
    2579 375.7
    4987 2336
    0.11 0.128 2.49 2.49 3740 1082 9098.927
    2493 383
    4838 2339
    0.13 0.128 2.41 2.41 3628 1101 9147.354
    2149 392
     | Show Table
    DownLoad: CSV

    Table 7.  Optimal solutions for different values of $ I_e $

    $ I_e $ $ T_{Min} $ $ T $ $ T^* $ $ Q_i $ $ B_i $ $ Z^*=Z_1 $
    5159 2332
    0.03 0.128 2.579 2.579 3869 1061 9047.469
    2579 375
    5158 2331.9
    0.05 0.128 2.579 2.579 3868.5 1061 9046.93
    2579 375.7
    5156 2330
    0.05 0.128 2.57 2.57 3867 1059 9046.39
    2578.6 374
    5154 2329
    0.06 0.128 2.56 2.56 3865 1058 9045.851
    2577 372
     | Show Table
    DownLoad: CSV
  • [1] L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, A simple method to compute economic order quantities: Some observations, Applied Mathematical Modelling, 34 (2010), 1684-1688. doi: 10.1016/j.apm.2009.08.024.
    [2] L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, B. Sarkar and G. Treviño-Garza, Easy and improved algorithms to joint determination of the replenishment lot size and number of shipments for an EPQ model with rework, Mathematical & Computational Applications, 18 (2013), 132-138.
    [3] S. W. Chiu, Production lot size problem with failure in repair and backlogging derived without derivatives, European Journal of Operational Research, 188 (2008), 610-615.  doi: 10.1016/j.ejor.2007.04.049.
    [4] S. W. ChiuS. L. Wang and Y. S. P. Chiu, Determining the optimal run time for EPQ model with scrap, rework, and stochastic break downs, European Journal of Operational Research, 180 (2007), 664-676. 
    [5] K. K. Damghani and A. Shahrokh, Solving a new multi-period multi-objective multi-product aggregate production planning problem using fuzzy goal programming, Industrial Engineering & Management Systems, 13 (2014), 369-382. 
    [6] S. K. Goyal, An integrated inventory model for a single supplier-single customer problem, International Journal of Production Research, 15 (1977), 107-111.  doi: 10.1080/00207547708943107.
    [7] S. K. Goyal, A joint economic lot-size model for purchaser and vendor: A comment, Decision Sciences, 19 (1988), 236-241.  doi: 10.1111/j.1540-5915.1988.tb00264.x.
    [8] S. K. Goyal and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, Note on economic production quantity model for items with imperfect quality a practical approach, International Journal of Production Economics, 77 (2002), 85-87. doi: 10.1016/S0925-5273(01)00203-1.
    [9] Y. F. Huang, Optimal retailer replenishment decisions in EPQ model under two levels of trade credit policy, European Journal of Operational Research, 176 (2007), 1577-1591. 
    [10] C. W. KangM. UllahB. SarkarH. Iftikhar and A. Rehman, Impact of random defective rate on lot size focusing work-in-process inventory in manufacturing system, International Journal of Production Research, 55 (2017), 1748-1766.  doi: 10.1080/00207543.2016.1235295.
    [11] S. J. Kim and B. Sarkar, Supply chain model with stochastic lead time, trade-credit financing, and transportation discounts, Mathematical Problems in Engineering, (2017), Article ID 6465912, 1-14. doi: 10.1155/2017/6465912.
    [12] J. LiS. Wang and T. C. E. Cheng, Analysis of postponement strategy by EPQ based models with planned backorders, Omega, 36 (2008), 777-788.  doi: 10.1016/j.omega.2006.03.002.
    [13] L. Y. Ouyang and C. T. Chang, Optimal production lot with imperfect production process under permissible delay in payments and complete backlogging, International Journal of Production Economics, 144 (2013), 610-617.  doi: 10.1016/j.ijpe.2013.04.027.
    [14] L. Y Ouyang, C. T. Yang, Y. L. Chan and L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, A comprehensive extension of the optimal replenishment decisions under two levels of trade credit policy depending on the order quantity, Applied Mathematics and Computation, 224 (2013), 268-277. doi: 10.1016/j.amc.2013.08.062.
    [15] L. Y. OuyangN. C. Yeh and K. S. Wu, Mixture inventory model with backorders and lost sales for variable lead time, Journal of Operations Research Socity, 47 (1996), 829-832. 
    [16] L. Y. OuyangB. R. Chuang and Y. J. Lin, Impact of backorder discounts on periodic review inventory model, International Journal of Information & Managment Science, 14 (2003), 1-13. 
    [17] C. H. Pan and Y. C. Hsiao, Inventory models with back-order discounts and variable lead time, Internatinal Journal of System Science, 32 (2010), 925-929.  doi: 10.1080/00207720010004449.
    [18] S. H. A. Pasandide and S.T. A. Niaki, A genetic algorithm approach to optimize a multi products EPQ model with discrete delivery orders and constrained space, Applied Mathematics and Computation, 195 (2008), 506-514.  doi: 10.1016/j.amc.2007.05.007.
    [19] W. D. PenticoM. J. Drake and C. Toews, The deterministic EPQ with partial backordering: A new approach, Omega, 37 (2009), 624-636. 
    [20] M. K. Salameh and M. Y. Jaber, Economic order quantity model for items with imperfect quality, International Journal of Production Economics, 64 (2000), 59-64. 
    [21] S. S. SanaS. K. Goyal and K. S. Chaudhuri, An imperfect production process in a volume flexible inventory model, International Journal of Production Economics, 105 (2007), 548-559. 
    [22] B. Sarkar, An inventory model with reliability in an imperfect production process, Applied Mathematics and Computations, 218 (2012a), 4881-4891.  doi: 10.1016/j.amc.2011.10.053.
    [23] B. Sarkar, An EOQ model with delay in payments and time varying deterioration rate, Mathematical and Computer Modelling, 55 (2012b), 367-377.  doi: 10.1016/j.mcm.2011.08.009.
    [24] B. Sarkar, Supply chain coordination with variable backorder, inspections, and discount policy for fixed lifetime products, Mathematical Problem in Engineering, 2016 (2016), Article ID 6318737, 1-14. doi: 10.1155/2016/6318737.
    [25] B. Sarkar, L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, M. Sarkar and M. L. Singgih, An economic production quantity model with random defective rate, rework process and backorders for a single stage production system, Journal of Manufacturing Systems, 33 (2014), 423-435. doi: 10.1016/j.jmsy.2014.02.001.
    [26] B. SarkarH. GuptaK. S. Chaudhuri and S. K. Goyal, An integrated inventory model with variable lead time, defective units and delay in payments, Applied Mathematics and Computations, 237 (2014), 650-658.  doi: 10.1016/j.amc.2014.03.061.
    [27] B. SarkarA. MajumderM. SarkarB. K. Dey and G. Roy, Two-echelon supply chain model with manufacturing quality improvement and setup cost reduction, Journal of Industrial and Management Optimization, 13 (2017), 1085-1104.  doi: 10.3934/jimo.2016063.
    [28] B. SarkarB. Mondal and S. Sarkar, Quality improvement and backorder price discount under controllable lead time in an inventory model, Journal of Manufacturing Systems, 35 (2015), 26-36.  doi: 10.1016/j.jmsy.2014.11.012.
    [29] B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system, Applied Mathematics and Computations, 217 (2011), 6159-6167.  doi: 10.1016/j.amc.2010.12.098.
    [30] B. SarkarS. S. Sana and K. S. Chaudhuri, Optimal reliability, production lotsize and safety stock: An economic manufacturing quantity model, International Journal of Management Science & Engineering Management, 5 (2010), 192-202. 
    [31] B. SarkarS. S. Sana and K. S. Chaudhuri, A stock-dependent inventory model in an imperfect production process, International Journal of Procurement Management, 3 (2010), 361-378.  doi: 10.1504/IJPM.2010.035467.
    [32] B. SarkarS. S. Sana and K. S. Chaudhuri, An imperfect production process for time varying demand with inflation and time value of money - An EMQ model, Expert Systems with Applications, 38 (2011), 13543-13548. 
    [33] B. Sarkar and S. Saren, Partial trade-credit policy of retailer with exponentially deteriorating items, International Journal of Applied and Computational Mathematics, 1 (2015), 343-368.  doi: 10.1007/s40819-014-0019-1.
    [34] B. Sarkar and S. Sarkar, An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand, Economic Modelling, 30 (2013), 924-932. 
    [35] H. Scarf, A Min-Max Solution of an Inventory Problem, In: Studies in the Mathematical Theory of Inventory and Production, Stanford University Press, Redwood City, CA, (1958), 201-209.
    [36] E. W. Taft, The most economical production lot, The Iron Age, 101 (1918), 1410-1412. 
    [37] A. H. Tai, Economic production quantity models for deteriorating/imperfect products and service with rework, Computers & Industrial Engineering, 66 (2013), 879-888.  doi: 10.1016/j.cie.2013.09.007.
    [38] A. A. Taleizadeh, An economic order quantity model for deteriorating item in a purchasing system with multiple prepayments, Applied Mathematical Modeling, 38 (2014), 5357-5366.  doi: 10.1016/j.apm.2014.02.014.
    [39] A. A. Taleizadeh, L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n, J. Biabani and R. R. Nikousokhan, Multi products single machine EPQ model with immediate rework process, International Journal of Industrial Engineering Computations, 3 (2012), 93-102. doi: 10.5267/j.ijiec.2011.09.001.
    [40] A. A. Taleizadeh, L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n and B. Mohammadi, Multi product single machine epq model with backordering, scraped products, rework and interruption in manufacturing process, International Journal of Production Economic, 150 (2014), 9-27. doi: 10.1016/j.ijpe.2013.11.023.
    [41] A. A. TaleizadehS. G. H. Jalali-NainiH. M. Wee and T. C. Kuo, An Imperfect, Multi Product Production System with Rework, Scientia Iranica, 20 (2013), 811-823. 
    [42] A. A. TaleizadehH. MoghadasiS. T. A. Niaki and A. K. Eftekhari, An EOQ-Joint Replenishment Policy to Supply Expensive Imported Raw Materials with Payment in Advance, Journal of Applied Science, 8 (2009), 4263-4273. 
    [43] A. A. TaleizadehA. A. Najafi and S. T. A. Niaki, Economic production quantity model with scraped items and limited production capacity, Scientia Iranica, 17 (2010), 58-69. 
    [44] A. A. TaleizadehS. T. Niaki and M. B. Aryanezhad, Multi-product multi-constraint inventory control systems with stochastic replenishment and discount under fuzzy purchasing price and holding costs, American Journal of Applied Science, 8 (2008), 1228-1234. 
    [45] A. A. Taleizadeh and D. W. Pentico, An Economic Order Quantity Model with Partial Backordering and All-units Discount, International Journal of Production Economic, 155 (2014), 172-184.  doi: 10.1016/j.ijpe.2014.01.012.
    [46] A. A. TaleizadehH. M. Wee and S. Gh. R. Jalali-Naini, Economic production quantity model with repair failure and limited capacity, Applied Mathematical Modeling, 37 (2013), 2765-2774.  doi: 10.1016/j.apm.2012.06.006.
    [47] A. A. TaleizadehH. M. Wee and F. Jolai, Revisiting fuzzy rough economic order quantity model for deteriorating items considering quantity discount and prepayment, Mathematical and Computer Modeling, 57 (2013), 1466-1479.  doi: 10.1016/j.mcm.2012.12.008.
    [48] A. A. TaleizadehH. M. Wee and S. J. Sadjadi, Multi-product production quantity model with repair failure and partial backordering, Computers & Industrial Engineering, 59 (2010), 45-54.  doi: 10.1016/j.cie.2010.02.015.
    [49] J. T. TengC. T. Chang and S. K. Goyal, Optimal pricing and ordering policy under permissible delay in payments, International Journal of Production Economics, 97 (2005), 121-129.  doi: 10.1016/j.ijpe.2004.04.010.
    [50] J. T. Teng and C. T. Chang, Optimal manufacturer's replenishment policies in the EPQ model under two levels of trade credit policy, European Journal of Operational Research, 195 (2009), 358-363.  doi: 10.1016/j.ejor.2008.02.001.
    [51] H. WeeG. WidyadanabA. Taleizadeh and J. Biabanid, Multi products single machine economic production quantity model with multiple batch size, International Journal of Industrial Engineering Computations, 2 (2011), 213-224. 
    [52] G. A. Widyadana L. E. C$\acute{a}$rdenas-Barr$\acute{o}$n and H. M. Wee, Economic order quantity model for deteriorating items with planned backorder level, Mathematical and Computer Modelling, 54 (2011), 1569-1575. doi: 10.1016/j.mcm.2011.04.028.
    [53] W. Wisittipanich and P. Hengmeechai, A multi-objective differential evolution for just-in-time door assignment and truck scheduling in multi-door cross docking problems, Industrial Engineering & Management Systems, 14 (2015), 299-311.  doi: 10.7232/iems.2015.14.3.299.
    [54] S. H. YooD. Kim and M. S. Park, Economic production quantity model with imperfect-quality items, two-way imperfect inspection and sales return, International Journal of Production Economics, 121 (2009), 255-265.  doi: 10.1016/j.ijpe.2009.05.008.
  • 加载中

Figures(4)

Tables(7)

SHARE

Article Metrics

HTML views(3478) PDF downloads(504) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return