• Previous Article
    Supervised distance preserving projection using alternating direction method of multipliers
  • JIMO Home
  • This Issue
  • Next Article
    Corporate and personal credit scoring via fuzzy non-kernel SVM with fuzzy within-class scatter
doi: 10.3934/jimo.2019004

Multidimensional balanced credibility model with time effect and two level random common effects

School of Science, Nanjing University of Science and Technology, Nanjing, China

* Corresponding author: zhangqiang189219@163.com

Received  October 2017 Revised  March 2018 Published  March 2019

Fund Project: The authors are supported by NSFC grant 11271189 and Scientific Research Innovation Project of Jiangsu Province grant KYZZ116_0175

This paper extends the multidimensional credibility model under balanced loss function to account for not only certain conditional dependence over time for claim amounts but also dependence across individual risks and over portfolio risks. By means of orthogonal projection method in Hilbert space of random vectors, the inhomogeneous and homogeneous multidimensional credibility estimators are derived, which generalize some well known existing results in credibility theory. Moreover, the unbiased estimators of structural parameters are investigated. Finally, we present a numerical example to show the existence of the multidimensional credibility estimators and their difference from the existing ones.

Citation: Qiang Zhang, Ping Chen. Multidimensional balanced credibility model with time effect and two level random common effects. Journal of Industrial & Management Optimization, doi: 10.3934/jimo.2019004
References:
[1]

C. BolancéM. Guillén and J. Pinquet, Time-varying credibility for frequency risk models: Estimation and tests for autoregressive specifications on the random effects, Insurance: Mathematics and Economics, 33 (2003), 273-282.  doi: 10.1016/S0167-6687(03)00139-2.  Google Scholar

[2]

H. Bühlmann and A. Gisler, A Course in Credibility Theory and its Application, 1nd edition, Springer-Verlag, Berlin, 2005.  Google Scholar

[3]

D. DeyM. Ghosh and W. Strawderman, On estimation with balanced loss functions, Statistics and Probability Letters, 45 (1999), 97-101.  doi: 10.1016/S0167-7152(99)00047-4.  Google Scholar

[4]

M. EbrahimzadehN. IbrahimA. Jemain and A. Kilicman, Claim dependence induced by common effects in Hierarchical credibility models, Communications in Statistics-Theory and Methods, 42 (2013), 3373-3400.  doi: 10.1080/03610926.2011.625487.  Google Scholar

[5]

M. EnglundM. GuillénJ. GustafssonL. Hansen and J. Nielsen, Multivariate latent risk: A credibility approach, Astin Bulletin, 38 (2008), 137-146.  doi: 10.1017/S0515036100015099.  Google Scholar

[6]

M. EnglundJ. GustafssonJ. Nielsen and F. Thuring, Multidimensional credibility with time effects: An application to commercial business lines, The Journal of Risk and Insurance, 76 (2009), 443-453.   Google Scholar

[7]

N. Farsipour and A. Asgharzadhe, Estimation of a normal mean relative to balanced loss functions, Statistical Papers, 45 (2004), 279-286.  doi: 10.1007/BF02777228.  Google Scholar

[8]

E. W. FreesV. R. Young and Y. Luo, A longitudinal data analysis interpretation of credibility models, Insurance: Mathematics and Economics, 24 (1999), 229-247.  doi: 10.1016/S0167-6687(98)00055-9.  Google Scholar

[9]

E. W. FreesV. R. Young and Y. Luo, Case studies using panel data models, North American Actuarial Journal, 5 (2001), 24-42.  doi: 10.1080/10920277.2001.10596010.  Google Scholar

[10]

E. W. Frees and P. Wang, Credibility using copulas, North American Actuarial Journal, 9 (2005), 31-48.  doi: 10.1080/10920277.2005.10596196.  Google Scholar

[11]

E. Gómez-Déniz, A generalization of the credibility theory obtained by using the weighted balanced loss function, Insurance: Mathematics and Economics, 42 (2008), 850-854.  doi: 10.1016/j.insmatheco.2007.09.002.  Google Scholar

[12]

W. Z. Huang and X. Y. Wu, Credibility premiums with dependence structure over risks and time horizon, Journal of Industrial and Management Optimization, 11 (2015), 365-380.  doi: 10.3934/jimo.2015.11.365.  Google Scholar

[13]

W. Huang and X. Wu, The credibility premiums with common effects obtained under balanced loss functions, Chinese Journal of Applied Probability and Statistics, 28 (2012), 203-216.   Google Scholar

[14]

M. JafariE. Marchand and A. Parsian, On estimation with weighted balanced-type loss function, Statistics and Probability Letters, 76 (2006), 773-780.  doi: 10.1016/j.spl.2005.10.026.  Google Scholar

[15]

W. S. Jewell, Multidimensional credibility, CRC Report, Berkeley: Operations Research Center, 1973. Google Scholar

[16]

O. Purcaru and M. Denuit, On the dependence induced by frequency credibility models, Belgian Actuarial Bulletin, 2 (2001), 73-79.   Google Scholar

[17]

O. Purcaru and M. Denuit, Dependence in dynamic claim frequency credibility models, Astin Bulletin, 33 (2003), 23-40.  doi: 10.1017/S0515036100013283.  Google Scholar

[18]

C. R. Rao and H. Toutenburg, Linear Models, 2nd edition, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4899-0024-1.  Google Scholar

[19]

L. M. WenX. Y. Wu and X. Zhou, The credibility premiums for models with dependence induced by common effects, Insurance: Mathematics and Economics, 44 (2009), 19-25.  doi: 10.1016/j.insmatheco.2008.09.005.  Google Scholar

[20]

L. M. Wen and X. Y. Wu, The credibility estimator with general dependence structure over risks, Communications in Statistics-Theory and Methods, 40 (2011), 1893-1910.  doi: 10.1080/03610921003650440.  Google Scholar

[21]

K. L. Yeo and E. A. Valdez, Claim dependence with common effects in credibility models, Insurance: Mathematics and Economics, 38 (2006), 609-629.  doi: 10.1016/j.insmatheco.2005.12.006.  Google Scholar

[22]

A. Zellner, Bayesian and non-Bayesian estimation using balanced loss functions, in Statistical decision theory and related topics, Ⅴ (eds. S. S. Gupta and J. O. Berger), Springer, New York, (1994), 377–390.  Google Scholar

[23]

Y. Zhang and L. M. Wen, Multidimensional credibility models with random common effect, Journal of East China Normal university, 2010 (2010), 156-168.   Google Scholar

[24]

Q. ZhangQ. Q. Cui and P. Chen, Multidimensional credibility estimators with random common effects and time effects, Journal of Systems Science and Complexity, 30 (2017), 1107-1120.  doi: 10.1007/s11424-017-5268-8.  Google Scholar

[25]

Q. ZhangL. J. Wu and Q. Q. Cui, The balanced credibility estimators with correlation risk and inflation factor, Statistical Papers, 58 (2017), 659-672.  doi: 10.1007/s00362-015-0719-6.  Google Scholar

show all references

References:
[1]

C. BolancéM. Guillén and J. Pinquet, Time-varying credibility for frequency risk models: Estimation and tests for autoregressive specifications on the random effects, Insurance: Mathematics and Economics, 33 (2003), 273-282.  doi: 10.1016/S0167-6687(03)00139-2.  Google Scholar

[2]

H. Bühlmann and A. Gisler, A Course in Credibility Theory and its Application, 1nd edition, Springer-Verlag, Berlin, 2005.  Google Scholar

[3]

D. DeyM. Ghosh and W. Strawderman, On estimation with balanced loss functions, Statistics and Probability Letters, 45 (1999), 97-101.  doi: 10.1016/S0167-7152(99)00047-4.  Google Scholar

[4]

M. EbrahimzadehN. IbrahimA. Jemain and A. Kilicman, Claim dependence induced by common effects in Hierarchical credibility models, Communications in Statistics-Theory and Methods, 42 (2013), 3373-3400.  doi: 10.1080/03610926.2011.625487.  Google Scholar

[5]

M. EnglundM. GuillénJ. GustafssonL. Hansen and J. Nielsen, Multivariate latent risk: A credibility approach, Astin Bulletin, 38 (2008), 137-146.  doi: 10.1017/S0515036100015099.  Google Scholar

[6]

M. EnglundJ. GustafssonJ. Nielsen and F. Thuring, Multidimensional credibility with time effects: An application to commercial business lines, The Journal of Risk and Insurance, 76 (2009), 443-453.   Google Scholar

[7]

N. Farsipour and A. Asgharzadhe, Estimation of a normal mean relative to balanced loss functions, Statistical Papers, 45 (2004), 279-286.  doi: 10.1007/BF02777228.  Google Scholar

[8]

E. W. FreesV. R. Young and Y. Luo, A longitudinal data analysis interpretation of credibility models, Insurance: Mathematics and Economics, 24 (1999), 229-247.  doi: 10.1016/S0167-6687(98)00055-9.  Google Scholar

[9]

E. W. FreesV. R. Young and Y. Luo, Case studies using panel data models, North American Actuarial Journal, 5 (2001), 24-42.  doi: 10.1080/10920277.2001.10596010.  Google Scholar

[10]

E. W. Frees and P. Wang, Credibility using copulas, North American Actuarial Journal, 9 (2005), 31-48.  doi: 10.1080/10920277.2005.10596196.  Google Scholar

[11]

E. Gómez-Déniz, A generalization of the credibility theory obtained by using the weighted balanced loss function, Insurance: Mathematics and Economics, 42 (2008), 850-854.  doi: 10.1016/j.insmatheco.2007.09.002.  Google Scholar

[12]

W. Z. Huang and X. Y. Wu, Credibility premiums with dependence structure over risks and time horizon, Journal of Industrial and Management Optimization, 11 (2015), 365-380.  doi: 10.3934/jimo.2015.11.365.  Google Scholar

[13]

W. Huang and X. Wu, The credibility premiums with common effects obtained under balanced loss functions, Chinese Journal of Applied Probability and Statistics, 28 (2012), 203-216.   Google Scholar

[14]

M. JafariE. Marchand and A. Parsian, On estimation with weighted balanced-type loss function, Statistics and Probability Letters, 76 (2006), 773-780.  doi: 10.1016/j.spl.2005.10.026.  Google Scholar

[15]

W. S. Jewell, Multidimensional credibility, CRC Report, Berkeley: Operations Research Center, 1973. Google Scholar

[16]

O. Purcaru and M. Denuit, On the dependence induced by frequency credibility models, Belgian Actuarial Bulletin, 2 (2001), 73-79.   Google Scholar

[17]

O. Purcaru and M. Denuit, Dependence in dynamic claim frequency credibility models, Astin Bulletin, 33 (2003), 23-40.  doi: 10.1017/S0515036100013283.  Google Scholar

[18]

C. R. Rao and H. Toutenburg, Linear Models, 2nd edition, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4899-0024-1.  Google Scholar

[19]

L. M. WenX. Y. Wu and X. Zhou, The credibility premiums for models with dependence induced by common effects, Insurance: Mathematics and Economics, 44 (2009), 19-25.  doi: 10.1016/j.insmatheco.2008.09.005.  Google Scholar

[20]

L. M. Wen and X. Y. Wu, The credibility estimator with general dependence structure over risks, Communications in Statistics-Theory and Methods, 40 (2011), 1893-1910.  doi: 10.1080/03610921003650440.  Google Scholar

[21]

K. L. Yeo and E. A. Valdez, Claim dependence with common effects in credibility models, Insurance: Mathematics and Economics, 38 (2006), 609-629.  doi: 10.1016/j.insmatheco.2005.12.006.  Google Scholar

[22]

A. Zellner, Bayesian and non-Bayesian estimation using balanced loss functions, in Statistical decision theory and related topics, Ⅴ (eds. S. S. Gupta and J. O. Berger), Springer, New York, (1994), 377–390.  Google Scholar

[23]

Y. Zhang and L. M. Wen, Multidimensional credibility models with random common effect, Journal of East China Normal university, 2010 (2010), 156-168.   Google Scholar

[24]

Q. ZhangQ. Q. Cui and P. Chen, Multidimensional credibility estimators with random common effects and time effects, Journal of Systems Science and Complexity, 30 (2017), 1107-1120.  doi: 10.1007/s11424-017-5268-8.  Google Scholar

[25]

Q. ZhangL. J. Wu and Q. Q. Cui, The balanced credibility estimators with correlation risk and inflation factor, Statistical Papers, 58 (2017), 659-672.  doi: 10.1007/s00362-015-0719-6.  Google Scholar

Table 1.  The simulation results with w = 0:2
$n$ 5 10 15 20 30 50 70
$\mbox{MSE}$ 1.4613 1.4145 1.3809 1.3587 1.3251 1.3113 1.3030
$\mbox{MSE}_{Z}$ 1.7420 1.6159 1.5784 1.5542 1.5199 1.4986 1.3537
$\mbox{MSE}_C$ 1.8901 1.6510 1.5835 1.5644 1.5487 1.5330 1.5206
$n$ 5 10 15 20 30 50 70
$\mbox{MSE}$ 1.4613 1.4145 1.3809 1.3587 1.3251 1.3113 1.3030
$\mbox{MSE}_{Z}$ 1.7420 1.6159 1.5784 1.5542 1.5199 1.4986 1.3537
$\mbox{MSE}_C$ 1.8901 1.6510 1.5835 1.5644 1.5487 1.5330 1.5206
Table 2.  The simulation results with w = 0:5
$n$ 5 10 15 20 30 50 70
$\mbox{MSE}$ 1.7979 1.6422 1.6170 1.5829 1.5687 1.5414 1.5238
$\mbox{MSE}_{Z}$ 1.9120 1.6895 1.6355 1.6043 1.5790 1.5659 1.5462
$\mbox{MSE}_C$ 2.0411 1.9881 1.9484 1.9284 1.8971 1.7423 1.6048
$n$ 5 10 15 20 30 50 70
$\mbox{MSE}$ 1.7979 1.6422 1.6170 1.5829 1.5687 1.5414 1.5238
$\mbox{MSE}_{Z}$ 1.9120 1.6895 1.6355 1.6043 1.5790 1.5659 1.5462
$\mbox{MSE}_C$ 2.0411 1.9881 1.9484 1.9284 1.8971 1.7423 1.6048
[1]

Limin Wen, Xianyi Wu, Xiaobing Zhao. The credibility premiums under generalized weighted loss functions. Journal of Industrial & Management Optimization, 2009, 5 (4) : 893-910. doi: 10.3934/jimo.2009.5.893

[2]

Bruno Buonomo, Marianna Cerasuolo. The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences & Engineering, 2015, 12 (3) : 473-490. doi: 10.3934/mbe.2015.12.473

[3]

Carine Lucas, Antoine Rousseau. Cosine effect in ocean models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 841-857. doi: 10.3934/dcdsb.2010.13.841

[4]

Laura M. Pérez, Jean Bragard, Hector Mancini, Jason A. C. Gallas, Ana M. Cabanas, Omar J. Suarez, David Laroze. Effect of anisotropies on the magnetization dynamics. Networks & Heterogeneous Media, 2015, 10 (1) : 209-221. doi: 10.3934/nhm.2015.10.209

[5]

Weizhong Huang, Xianyi Wu. Credibility models with dependence structure over risks and time horizon. Journal of Industrial & Management Optimization, 2015, 11 (2) : 365-380. doi: 10.3934/jimo.2015.11.365

[6]

Gopinath Panda, Veena Goswami. Effect of information on the strategic behavior of customers in a discrete-time bulk service queue. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-20. doi: 10.3934/jimo.2019007

[7]

David Kinderlehrer, Michał Kowalczyk. The Janossy effect and hybrid variational principles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 153-176. doi: 10.3934/dcdsb.2009.11.153

[8]

Shigui Ruan, Wendi Wang, Simon A. Levin. The effect of global travel on the spread of SARS. Mathematical Biosciences & Engineering, 2006, 3 (1) : 205-218. doi: 10.3934/mbe.2006.3.205

[9]

Elena Braverman, Alexandra Rodkina. Stochastic difference equations with the Allee effect. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5929-5949. doi: 10.3934/dcds.2016060

[10]

J. J. Morgan, Hong-Ming Yin. On Maxwell's system with a thermal effect. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 485-494. doi: 10.3934/dcdsb.2001.1.485

[11]

Alina Macacu, Dominique J. Bicout. Effect of the epidemiological heterogeneity on the outbreak outcomes. Mathematical Biosciences & Engineering, 2017, 14 (3) : 735-754. doi: 10.3934/mbe.2017041

[12]

Luis F. Gordillo, Stephen A. Marion, Priscilla E. Greenwood. The effect of patterns of infectiousness on epidemic size. Mathematical Biosciences & Engineering, 2008, 5 (3) : 429-435. doi: 10.3934/mbe.2008.5.429

[13]

Guangying Lv, Hongjun Gao, Jinlong Wei, Jiang-Lun Wu. The effect of noise intensity on parabolic equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019248

[14]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[15]

Linglong Du. Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks & Heterogeneous Media, 2018, 13 (4) : 549-565. doi: 10.3934/nhm.2018025

[16]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[17]

Toru Sasaki. The effect of local prevention in an SIS model with diffusion. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 739-746. doi: 10.3934/dcdsb.2004.4.739

[18]

Daniel Maxin, Fabio Augusto Milner. The effect of nonreproductive groups on persistent sexually transmitted diseases. Mathematical Biosciences & Engineering, 2007, 4 (3) : 505-522. doi: 10.3934/mbe.2007.4.505

[19]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Ghost effect by curvature in planar Couette flow. Kinetic & Related Models, 2011, 4 (1) : 109-138. doi: 10.3934/krm.2011.4.109

[20]

Young-Pil Choi, Seung-Yeal Ha, Javier Morales. Emergent dynamics of the Kuramoto ensemble under the effect of inertia. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 4875-4913. doi: 10.3934/dcds.2018213

2018 Impact Factor: 1.025

Metrics

  • PDF downloads (51)
  • HTML views (419)
  • Cited by (0)

Other articles
by authors

[Back to Top]