[1]
|
A. Agnetis, G. de Pascale and D. Pacciarelli, A Lagrangian approach to single-machine scheduling problems with two competing agents, Journal of Scheduling, 12 (2009), 401-415.
doi: 10.1007/s10951-008-0098-0.
|
[2]
|
A. Agnetis, P. B. Mirchandani, D. Pacciarelli and A. Pacifici, Scheduling problems with two competing agents, Operations Research, 52 (2004), 229-242.
doi: 10.1287/opre.1030.0092.
|
[3]
|
K. R. Baker and J. Cole Smith, A multiple-criterion model for machine scheduling, Journal of Scheduling, 6 (2003), 7-16.
doi: 10.1023/A:1022231419049.
|
[4]
|
P. Baptiste, J. Carlier and A. Jouglet, A branch-and-bound procedure to minimize total tardiness on one machine with arbitrary release dates, European Journal of Operational Research, 158 (2004), 595-608.
doi: 10.1016/S0377-2217(03)00378-3.
|
[5]
|
J. Blazewicz, Scheduling preemptible tasks on parallel processors with information k s., (1984).
|
[6]
|
J. Błazewicz, M. Drozdowski, P. Formanowicz, W. Kubiak and G. Schmidt, Scheduling preemptable tasks on parallel processors with limited availability, Parallel Computing, 26 (2000), 1195-1211.
doi: 10.1016/S0167-8191(00)00035-1.
|
[7]
|
P. J. Brewer and C. R. Plott, A binary conflict ascending price (BICAP) mechanism for the decentralized allocation of the right to use railroad tracks, International Journal of Industrial Organization, 14 (1996), 857-886.
doi: 10.1016/0167-7187(96)01014-4.
|
[8]
|
S.-R. Cheng, Some new problems on two-agent scheduling to minimize the earliness costs, International Journal of Production Economics, 156 (2014), 24-30.
doi: 10.1016/j.ijpe.2014.05.004.
|
[9]
|
T. E. Cheng, Y.-H. Chung, S.-C. Liao and W.-C. Lee, Two-agent singe-machine scheduling with release times to minimize the total weighted completion time, Computers & Operations Research, 40 (2013), 353-361.
doi: 10.1016/j.cor.2012.07.013.
|
[10]
|
T. E. Cheng, C.-Y. Liu, W.-C. Lee and M. Ji, Two-agent single-machine scheduling to minimize the weighted sum of the agents' objective functions, Computers & Industrial Engineering, 78 (2014), 66-73.
doi: 10.1016/j.cie.2014.09.028.
|
[11]
|
T. E. Cheng, C. Ng and J. Yuan, Multi-agent scheduling on a single machine with max-form criteria, European Journal of Operational Research, 188 (2008), 603-609.
doi: 10.1016/j.ejor.2007.04.040.
|
[12]
|
D. Elvikis, H. W. Hamacher and V. T'kindt, Scheduling two agents on uniform parallel machines with makespan and cost functions, Journal of Scheduling, 14 (2011), 471-481.
doi: 10.1007/s10951-010-0201-1.
|
[13]
|
D. Elvikis and V. T'kindt, Two-agent scheduling on uniform parallel machines with min-max criteria, Annals of Operations Research, 213 (2014), 79-94.
doi: 10.1007/s10479-012-1099-0.
|
[14]
|
E. Gerstl and G. Mosheiov, Scheduling problems with two competing agents to minimized weighted earliness-tardiness, Computers & Operations Research, 40 (2013), 109-116.
doi: 10.1016/j.cor.2012.05.019.
|
[15]
|
E. Gerstl and G. Mosheiov, Single machine just-in-time scheduling problems with two competing agents, Naval Research Logistics (NRL), 61 (2014), 1-16.
doi: 10.1002/nav.21562.
|
[16]
|
A. M. Hariri, C. N. Potts and L. N. Van Wassenhove, Single machine scheduling to minimize total weighted late work, ORSA Journal on Computing, 7 (1995), 232-242.
|
[17]
|
W. Horn, Some simple scheduling algorithms, Naval Research Logistics (NRL), 21 (1974), 177-185.
doi: 10.1002/nav.3800210113.
|
[18]
|
R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Computations(Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N. Y., 1972), , Springer, (1972), 85–103.
|
[19]
|
S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671-680.
doi: 10.1126/science.220.4598.671.
|
[20]
|
W.-C. Lee, Y.-H. Chung and M.-C. Hu, Genetic algorithms for a two-agent single-machine problem with release time, Applied Soft Computing, 12 (2012), 3580-3589.
doi: 10.1016/j.asoc.2012.06.015.
|
[21]
|
W.-C. Lee, Y.-H. Chung and Z.-R. Huang, A single-machine bi-criterion scheduling problem with two agents, Applied Mathematics and Computation, 219 (2013), 10831-10841.
doi: 10.1016/j.amc.2013.05.025.
|
[22]
|
W.-C. Lee, W.-J. Wang, Y.-R. Shiau and C.-C. Wu, A single-machine scheduling problem with two-agent and deteriorating jobs, Applied Mathematical Modelling, 34 (2010), 3098-3107.
doi: 10.1016/j.apm.2010.01.015.
|
[23]
|
J. Y.-T. Leung, M. Pinedo and G. Wan, Competitive two-agent scheduling and its applications, Operations Research, 58 (2010), 458-469.
doi: 10.1287/opre.1090.0744.
|
[24]
|
H. Li, Y. Gajpal and C. Bector, Single machine scheduling with two-agent for total weighted completion time objectives, Applied Soft Computing, 70 (2018), 147-156.
doi: 10.1016/j.asoc.2018.05.027.
|
[25]
|
Y. Lun, K. Lai, C. Ng, C. Wong and T. Cheng, Editorial: Research in Shipping and Transport Logistics, International Journal of Shipping and Transport Logistics, 2011.
|
[26]
|
M. Mezmaz, N. Melab, Y. Kessaci, Y. C. Lee, E.-G. Talbi, A. Y. Zomaya and D. Tuyttens, A parallel bi-objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems, Journal of Parallel and Distributed Computing, 71 (2011), 1497-1508.
doi: 10.1016/j.jpdc.2011.04.007.
|
[27]
|
J. M. Moore, An n job, one machine sequencing algorithm for minimizing the number of late jobs, Management Science, 15 (1968), 102-109.
doi: 10.1287/mnsc.15.1.102.
|
[28]
|
B. Mor and G. Mosheiov, Scheduling problems with two competing agents to minimize minmax and minsum earliness measures, European Journal of Operational Research, 206 (2010), 540-546.
doi: 10.1016/j.ejor.2010.03.003.
|
[29]
|
B. Mor and G. Mosheiov, A two-agent single machine scheduling problem with due-window assignment and a common flow-allowance, Journal of Combinatorial Optimization, 33 (2017), 1454-1468.
doi: 10.1007/s10878-016-0049-1.
|
[30]
|
C. Ng, T. C. Cheng and J. Yuan, A note on the complexity of the problem of two-agent scheduling on a single machine, Journal of Combinatorial Optimization, 12 (2006), 387-394.
doi: 10.1007/s10878-006-9001-0.
|
[31]
|
S. Pandey, L. Wu, S. M. Guru and R. Buyya, A particle swarm optimization-based heuristic for scheduling workflow applications in cloud computing environments, Paper presented at the Advanced information networking and applications (AINA), 2010 24th IEEE international conference on, 2010.
|
[32]
|
J. M. Peha, Heterogeneous-criteria scheduling: minimizing weighted number of tardy jobs and weighted completion time, Computers & Operations Research, 22 (1995), 1089-1100.
doi: 10.1016/0305-0548(94)00090-U.
|
[33]
|
M. Pinedo, Scheduling, Theory, algorithms, and systems. Fourth edition. Springer, New York, 2012.
doi: 10.1007/978-1-4614-2361-4.
|
[34]
|
C. N. Potts and L. N. Van Wassenhove, Approximation algorithms for scheduling a single machine to minimize total late work, Operations Research Letters, 11 (1992), 261-266.
doi: 10.1016/0167-6377(92)90001-J.
|
[35]
|
C. N. Potts and L. N. Van Wassenhove, Single machine scheduling to minimize total late work, Operations Research, 40 (1992), 586-595.
doi: 10.1287/opre.40.3.586.
|
[36]
|
M. Reisi-Nafchi and G. Moslehi, A hybrid genetic and linear programming algorithm for two-agent order acceptance and scheduling problem, Applied Soft Computing, 33 (2015), 37-47.
doi: 10.1016/j.asoc.2015.04.027.
|
[37]
|
R. Soltani, F. Jolai and M. Zandieh, Two robust meta-heuristics for scheduling multiple job classes on a single machine with multiple criteria, Expert Systems with Applications, 37 (2010), 5951-5959.
doi: 10.1016/j.eswa.2010.02.009.
|
[38]
|
M. Soomer and G. J. Franx, Scheduling aircraft landings using airlines' preferences, European Journal of Operational Research, 190 (2008), 277-291.
doi: 10.1016/j.ejor.2007.06.017.
|
[39]
|
M. Sterna, A survey of scheduling problems with late work criteria, Omega, 39 (2011), 120-129.
doi: 10.1016/j.omega.2010.06.006.
|
[40]
|
V. Suresh and D. Chaudhuri, Bicriteria scheduling problem for unrelated parallel machines, Computers & industrial engineering, 30 (1996), 77-82.
doi: 10.1016/0360-8352(95)00028-3.
|
[41]
|
L. N. Van Wassenhove and C. N. Potts, Single machine scheduling to minimize total late work, Oper. Res., 40 (1992), 586-595.
doi: 10.1287/opre.40.3.586.
|
[42]
|
D.-J. Wang, C.-C. Kang, Y.-R. Shiau, C.-C. Wu and P.-H. Hsu, A two-agent single-machine scheduling problem with late work criteria, Soft Computing, 21 (2017), 2015-2033.
doi: 10.1007/s00500-015-1900-5.
|
[43]
|
D.-J. Wang, Y. Yin, S.-R. Cheng, T. Cheng and C.-C. Wu, Due date assignment and scheduling on a single machine with two competing agents, International Journal of Production Research, 54 (2016), 1152-1169.
|
[44]
|
D.-J. Wang, Y. Yin, J. Xu, W.-H. Wu, S.-R. Cheng and C.-C. Wu, Some due date determination scheduling problems with two agents on a single machine, International Journal of Production Economics, 168 (2015), 81-90.
doi: 10.1016/j.ijpe.2015.06.018.
|
[45]
|
W.-H. Wu, An exact and meta-heuristic approach for two-agent single-machine scheduling problem, Journal of Marine Science and Technology, 21 (2013), 215-221.
|
[46]
|
W.-H. Wu, Y. Yin, W.-H. Wu, C.-C. Wu and P.-H. Hsu, A time-dependent scheduling problem to minimize the sum of the total weighted tardiness among two agents, Journal of Industrial & Management Optimization, 10 (2014), 591-611.
doi: 10.3934/jimo.2014.10.591.
|
[47]
|
Z. Xingong and W. Yong, Two-agent scheduling problems on a single-machine to minimize the total weighted late work, Journal of Combinatorial Optimization, 33 (2017), 945-955.
doi: 10.1007/s10878-016-0017-9.
|
[48]
|
M. Yazdani and F. Jolai, A Genetic Algorithm with Modified Crossover Operator for a Two-Agent Scheduling Problem, Shiraz Journal of System Management, 1 (2013), 1-13.
|
[49]
|
Y. Yin, S.-R. Cheng, T. Cheng, D.-J. Wang and C.-C. Wu, Just-in-time scheduling with two competing agents on unrelated parallel machines, Omega, 63 (2016), 41-47.
doi: 10.1016/j.omega.2015.09.010.
|
[50]
|
Y. Yin, S.-R. Cheng, T. Cheng, W.-H. Wu and C.-C. Wu, Two-agent single-machine scheduling with release times and deadlines, International Journal of Shipping and Transport Logistics, 5 (2013), 75-94.
doi: 10.1504/IJSTL.2013.050590.
|
[51]
|
Y. Yin, T. Cheng, D.-J. Wang and C.-C. Wu, Two-agent flowshop scheduling to maximize the weighted number of just-in-time jobs, Journal of scheduling, 20 (2017), 313-335.
doi: 10.1007/s10951-017-0511-7.
|
[52]
|
Y. Yin, W. Wang, D. Wang and T. Cheng, Multi-agent single-machine scheduling and unrestricted due date assignment with a fixed machine unavailability interval, Computers & Industrial Engineering, 111 (2017), 202-215.
doi: 10.1016/j.cie.2017.07.013.
|
[53]
|
Y. Yin, C.-C. Wu, W.-H. Wu, C.-J. Hsu and W.-H. Wu, A branch-and-bound procedure for a single-machine earliness scheduling problem with two agents, Applied Soft Computing, 13 (2013), 1042-1054.
doi: 10.1016/j.asoc.2012.09.026.
|
[54]
|
Y. Yin, W.-H. Wu, S.-R. Cheng and C.-C. Wu, An investigation on a two-agent single-machine scheduling problem with unequal release dates, Computers & Operations Research, 39 (2012), 3062-3073.
doi: 10.1016/j.cor.2012.03.012.
|
[55]
|
Y. Yin, W.-H. Wu, T. Cheng, C.-C. Wu and W.-H. Wu, A honey-bees optimization algorithm for a two-agent single-machine scheduling problem with ready times, Applied Mathematical Modelling, 39 (2015), 2587-2601.
doi: 10.1016/j.apm.2014.10.044.
|
[56]
|
J. Yuan, C. Ng and T. E. Cheng, Two-agent single-machine scheduling with release dates and preemption to minimize the maximum lateness, Journal of Scheduling, 18 (2015), 147-153.
doi: 10.1007/s10951-013-0360-y.
|
[57]
|
F. Zhang, C. Ng, G. Tang, T. Cheng and Y. Lun, Inverse scheduling: Applications in shipping, International Journal of Shipping and Transport Logistics, 3 (2011), 312-322.
doi: 10.1504/IJSTL.2011.040800.
|