\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Deteriorating inventory with preservation technology under price- and stock-sensitive demand

  • * Corresponding Author: sankroy2006@gmail.com

    * Corresponding Author: sankroy2006@gmail.com 

The author, Magfura Pervin is very much thankful to University Grants Commission (UGC) of India for providing financial support to continue this research work under [MANF(UGC)] scheme: Sanctioned letter number [F1-17.1/2012-13/MANF-2012-13-MUS-WES-19170 /(SA-Ⅲ/Website)] dated 28/02/2013.
The research of Sankar Kumar Roy is partially supported by the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), through the CIDMA - Center for Research and Development in Mathematics and Applications, University of Aveiro, Portugal, within project UID/MAT/04106/2019.
The research of Gerhard-Wilhelm Weber (Institute of Applied Mathematics, Middle East Technical University, 06800, Ankara, Turkey) is partially supported by the Portuguese Foundation for Science and Technology ("FCT-Fundação para a Ciência e a Tecnologia"), through the CIDMA - Center for Research and Development in Mathematics and Applications.

Abstract / Introduction Full Text(HTML) Figure(7) / Table(2) Related Papers Cited by
  • In this paper, we formulate and solve an Economic Production Quantity inventory model with deteriorating items. To reduce the rate of deterioration, we apply a preservation technology and calculate the amount for preservation technology investment. The demand function is dependent on stock-level and price. We assume that the production rate is linearly dependent on time, based on customer demand. Shortages are allowed in our consideration, and the shortages amount is partially backlogged for the interested customers for the next slot. The effect of inflation is incorporated, which indicates a critical factor in modern days. Our main objective is to find the optimal cycle length and the optimal amount of preservation technology investment by adjusting the inflation rate with maximizing the profit. A numerical example is provided to illustrate the features and advances of the model. A sensitivity analysis with respect to major parameters is performed in order to assess the stability of our model. The paper ends with a conclusion and an outlook at possible future directions.

    Mathematics Subject Classification: Primary: 90B05; Secondary: 90C26.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The inventory path-line

    Figure 2.  Concavity of the profit function; including are $ x^* $, $ r_1^* $ and $ TP $, as x-axis, y-axis and z-axis, respectively

    Figure 3.  Concavity of the profit function; including are $ r_1^* $, $ r_2^* $ and $ TP $, as x-axis, y-axis and z-axis, respectively

    Figure 4.  Concavity of the profit function; including are $ x^* $, $ r_2^* $ and $ TP $, as x-axis, y-axis and z-axis, respectively

    Figure 5.  Effect of $ \theta $ on total profit $ TP $

    Figure 6.  Effect of $ \theta $ on selling price $ r_1 $

    Figure 7.  Effect of demand parameter $ b_1 $ on preservation amount $ x $

    Table 1.  Contributions of some authors related to inventory model

    Authors Deterio-rations Preservation Technology Stock-dependent Price-dependent Inflation Partial backorder
    Bhunia et al. (2009) $\surd$
    Dave & Patel (1981) $\surd$
    Papachristos & Skouri (2003) $\surd$ $\surd$
    Wee (1997) $\surd$ $\surd$
    Hsu et al. (2010) $\surd$ $\surd$
    Maihami and Abadi (2012) $\surd$ $\surd$
    Khedlekar et al. (2016) $\surd$ $\surd$
    Murr and Morris (1975) $\surd$ $\surd$
    Buzacott (1975) $\surd$
    Gupta and Vrat (1986) $\surd$
    Liao et al. (2000) $\surd$ $\surd$ $\surd$
    Ray and Chaudhuri (1997) $\surd$ $\surd$
    Pal et al. (2014) $\surd$ $\surd$ $\surd$ $\surd$
    Sarkar and Moon (2011) $\surd$
    Shah et al. (2017) $\surd$ $\surd$
    Teng and Chang (2005) $\surd$ $\surd$ $\surd$
    Widyadana and Wee (2010) $\surd$ $\surd$
    This work $\surd$ $\surd$ $\surd$ $\surd$ $\surd$ $\surd$
     | Show Table
    DownLoad: CSV

    Table 2.  Sensitivity analysis on decision variables with respect to major parameters

    Input Parameters Output Variables and Parameters $-50\%$ $-20\%$ $0\%$ $+20\%$ $+50\%$
    $T$ 1.213 1.120 0.932 0.730 0.691
    $x$ 4.5 4.0 3.5 2.7 2.1
    $a_1$ $r_1$ 12.7212 15.1139 16.2681 17.2527 18.1462
    $r_2$ 11.58 12.86 13.42 14.23 15.70
    $TP$ 1980.21 2378.00 2549.00 2645.72 2868.43
    $T$ 0.647 0.720 0.839 0.906 0.987
    $x$ 1.8 2.2 2.6 2.9 3.3
    $c_1$ $r_1$ 19.3510 18.7220 17.5701 16.0148 14.7370
    $r_2$ 15.65 13.76 12.59 11.38 10.44
    $TP$ 3376.30 3048.00 2849.21 2432.43 2135.67
    $T$ 1.211 1.053 0.916 0.848 0.720
    $x$ 3.4 3.0 2.9 2.6 2.1
    $h_1$ $r_1$ 15.5108 16.7233 17.3604 17.9451 18.4817
    $r_2$ 11.55 11.89 12.10 12.93 13.41
    $TP$ 3142.31 2991.00 2635.21 2307.10 2069.38
    $T$ 1.120 0.984 0.764 0.793 0.807
    $x$ 3.6 3.4 3.1 2.8 2.5
    $b_1$ $r_1$ 16.4707 16.8574 17.3612 18.7185 20.7354
    $r_2$ 10.73 11.81 12.46 12.79 13.99
    $TP$ 2376.00 2578.82 2854.06 3075.56 3243.61
    $T$ 0.867 0.867 0.867 0.867 0.835
    $x$ 2.7 2.8 2.9 3.0 3.2
    $\delta$ $r_1$ 19.4603 18.8746 18.2163 17.7563 17.3356
    $r_2$ 11.77 12.13 12.85 13.23 13.79
    $TP$ 2649.01 2546.24 2480.23 2465.35 2435.31
    $T$ 0.979 0.964 0.932 0.881 0.831
    $x$ 3.1 3.0 2.8 2.7 2.5
    $c$ $r_1$ 16.3745 16.8100 17.1344 17.6007 17.9103
    $r_2$ 11.45 11.79 11.97 12.32 12.85
    $TP$ 3036.54 2850.23 2662.04 2567.54 2387.37
    $T$ 1.158 1.074 0.964 0.793 0.549
    $x$ 3.45 3.16 2.90 2.75 2.53
    $\theta$ $r_1$ 14.0826 16.7284 18.2352 20.3577 23.1437
    $r_2$ 9.76 10.45 13.12 15.67 17.88
    $TP$ 2719.03 2680.25 2559.47 2478.53 2376.82
     | Show Table
    DownLoad: CSV
  • [1] M. BakkerJ. Riezebos and R. H. Teunter, Review of inventory systems with deterioration since 2001, European Journal of Operational Research, 221 (2012), 275-284.  doi: 10.1016/j.ejor.2012.03.004.
    [2] S. Bardhan, H. Pal and B. C. Giri, Optimal replenishment policy and preservation technology investment for a non-instantaneous deteriorating item with stock-dependent demand, Operational Research: An International Journal, (2017), 1–22. doi: 10.1007/s12351-017-0302-0.
    [3] A. K. BhuniaS. KunduT. Sannigrahi and S. K. Goyal, An application of tournament genetic algorithm in a marketing oriented economic production lot-size model for deteriorating items, International Journal of Production Economics, 119 (2009), 112-121.  doi: 10.1016/j.ijpe.2009.01.010.
    [4] J. A. Buzacott, Economic order quantities with inflation, Operational Research Quaterly, 26 (1975), 553-558. 
    [5] A. Cambini and L. Martein, Generalized Convexity and Optimization: Theory and Application, Lecture Notes in Economics and Mathematical Systems, 616. Springer-Verlag, Berlin, 2009.
    [6] U. Dave and L. K. Patel, $(T, S_i)$ policy inventory model for deteriorating items with time proportional demand, The Journal of the Operational Research Society, 32 (1981), 137-142. 
    [7] C. Y. Dye, The effect of preservation technology investment on a non-instantaneous deteriorating inventory model, OMEGA, 41 (2013), 872-880.  doi: 10.1016/j.omega.2012.11.002.
    [8] P. M. Ghare and G. P. Schrader, A model for an exponentially decaying inventory, Journal of Industrial Engineering, 14 (1963), 238-243. 
    [9] S. K. Goyal and B. C. Giri, Recent trend in modeling of deteriorating inventory, European Journal of Operational Research, 134 (2001), 1-16.  doi: 10.1016/S0377-2217(00)00248-4.
    [10] R. Gupta and P. Vrat, Inventory model with multi-items under constraint systems for stock dependent consumption rate, Opsearch, 23 (1986), 19-24. 
    [11] P. H. HsuH. M. Wee and H. M. Teng, Preservation technology investment for deteriorating inventory, International Journal of Production Economics, 124 (2010), 388-394.  doi: 10.1016/j.ijpe.2009.11.034.
    [12] U. K. Khedlekar, D. Shukla and A. Namdeo, Pricing policy for declining demand using item preservation technology, Springer Plus, 5 (2016), 1957. doi: 10.1186/s40064-016-3627-x.
    [13] R. I. Levin, C. P. Mclaughlin, R. P. Lamone and J. F. Kottas, Productions Operations Management: Contemporary Policy for Managing Operating System, McGraw-Hill Series in Management, New York, 1972.
    [14] H. C. LiaoC. H. Tsai and C. T. Su, An inventory model with deteriorating items under inflation when a delay in payment is permissible, International Journal of Production Economics, 63 (2000), 207-214.  doi: 10.1016/S0925-5273(99)00015-8.
    [15] R. Maihami and N. K. Abadi, Joint control of inventory and its pricing for non-instantaneouly deteriorating items under permissible delay in payments and partial backlogging, Mathematical and Computer Modelling, 55 (2012), 1722-1733.  doi: 10.1016/j.mcm.2011.11.017.
    [16] D. P. Murr and L. L. Morris, Effect of storage temperature on post change in mushrooms, Journal of the American Society for Horticultural Science, 100 (1975), 16-19. 
    [17] L. Y. OuyangK. S. Wu and C. T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments, Computers & Industrial Engineering, 51 (2006), 637-651.  doi: 10.1016/j.cie.2006.07.012.
    [18] S. PalG. S. Mahapatra and G. P. Samanta, An inventory model of price and stock dependent demand rate with deterioration under inflation and delay in payment, International Journal of System Assurance Engineering and Management, 5 (2014), 591-601.  doi: 10.1007/s13198-013-0209-y.
    [19] P. Papachristos and K. Skouri, A discrete-in-time probabilistic inventory model for deteriorating items under conditions of permissible delay in paymentsAn inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging, International Journal of Production Economics, 83 (2003), 247-256. 
    [20] M. PervinG. C. Mahata and S. K. Roy, An inventory model with demand declining market for deteriorating items under trade credit policy, International Journal of Management Science and Engineering Management, 11 (2016), 243-251.  doi: 10.1080/17509653.2015.1081082.
    [21] M. PervinS. K. Roy and G. W. Weber, Analysis of inventory control model with shortage under time-dependent demand and time-varying holding cost including stochastic deterioration, Annals of Operations Research, 260 (2018), 437-460.  doi: 10.1007/s10479-016-2355-5.
    [22] M. PervinS. K. Roy and G. W. Weber, A Two-echelon inventory model with stock-dependent demand and variable holding cost for deteriorating items, Numerical Algebra, Control and Optimization, 7 (2017), 21-50.  doi: 10.3934/naco.2017002.
    [23] M. PervinS. K. Roy and G. W. Weber, An integrated inventory model with variable holding cost under two levels of trade-credit policy, Numerical Algebra, Control and Optimization, 8 (2018), 169-191.  doi: 10.3934/naco.2018010.
    [24] M. PervinS. K. Roy and G. W. Weber, Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade-credit policy, Journal of Industrial and Management Optimization, 7 (2017), 21-50.  doi: 10.3934/naco.2017002.
    [25] J. Ray and K. S. Chaudhuri, An EOQ model with stock-dependent demand, shortage, inflation and time discounting, International Journal of Production Economics, 53 (1997), 171-180.  doi: 10.1016/S0925-5273(97)00112-6.
    [26] S. K. RoyM. Pervin and G. W. Weber, A two-warehouse probabilistic model with price discount on backorders under two levels of trade-credit policy, Journal of Industrial and Management Optimization, 8 (2018), 169-191.  doi: 10.3934/naco.2018010.
    [27] S. Schaible, Fractional programming, Mathematical Methods of Operations Research, 27 (1983), 39-54.  doi: 10.1007/bf01916898.
    [28] B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect manufacturing system, Applied Mathematics and Computation, 217 (2011), 6159-6167.  doi: 10.1016/j.amc.2010.12.098.
    [29] N. H. ShahH. N. Soni and K. A. Patel, Optimizing inventory and marketing policy for non-instantaneous deteriorating items with generalized type deterioration and holding cost rates, OMEGA, 41 (2013), 421-430.  doi: 10.1016/j.omega.2012.03.002.
    [30] N. H. ShahM. Y. Jani and U. Chaudhari, Study of imperfect manufacturing system with preservation technology investment under inflationary environment for quadratic demand: a reverse logistic approach, Journal of Advanced Manufacturing Systems, 16 (2017), 17-34.  doi: 10.1142/S0219686717500020.
    [31] J. T. Teng and C. T. Chang, Economic production quantity models for deteriorating items with price- and stock-dependent demand, Computers and Operations Research, 32 (2005), 297-308.  doi: 10.1016/S0305-0548(03)00237-5.
    [32] Y. C. Tsao, Ordering policy for non-instantaneously deteriorating products under price adjustment and trade credits, Journal of Industrial and Management Optimization, 13 (2017), 327-345.  doi: 10.3934/jimo.2016020.
    [33] H. M. Wee, A replenishment policy for items with a price-dependent demand and a varying rate of deterioration, Production Planning & Control, 8 (1997), 494-499.  doi: 10.1080/095372897235073.
    [34] G. A. Widyadana and H. M. Wee, Production inventory models for deteriorating items with stochastic machine unavailability time, lost sales and price-dependent demand, Journal Teknik Industri, 12 (2010), 61-68. 
    [35] G. ZaubermanR. RonenM. Akerman and Y. Fuchs, Low PH treatment protects litchi fruit colour, Acta Hortic, 269 (1990), 309-314. 
  • 加载中

Figures(7)

Tables(2)

SHARE

Article Metrics

HTML views(3652) PDF downloads(571) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return