[1]
|
T. Bouwmans, Traditional and recent approaches in background modeling for foreground detection: An overview, Computer Science Review, 11/12 (2014), 31-66.
doi: 10.1016/j.cosrev.2014.04.001.
|
[2]
|
T. Bouwmans, A. Sobral, S. Javed, S. Jung and E. Zahzah, Decomposition into low-rank plus additive matrices for background/foreground separation, Computer Science Review, 23 (2017), 2-71.
|
[3]
|
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine learning, 3 (2010), 1-122.
|
[4]
|
E. Candès, X. Li, Y. Ma and J. Wright, Robust principal component analysis?, Journal of the ACM, 58 (2009), Art. 11, 37 pp.
doi: 10.1145/1970392.1970395.
|
[5]
|
E. Candès and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, 51 (2005), 4203-4215.
doi: 10.1109/TIT.2005.858979.
|
[6]
|
X. Cao, L. Yang and X. Guo, Total variation regularized RPCA for irregularly moving object detection under dynamic background, IEEE Transactions on Cybernetics, 46 (2016), 1014-1027.
doi: 10.1109/TCYB.2015.2419737.
|
[7]
|
C. Chen, B. He, Y. Ye and X. Yuan, The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent, Mathematical Programming, 155 (2016), 57-79.
doi: 10.1007/s10107-014-0826-5.
|
[8]
|
L. Chen, D. Sun and K. Toh, An efficient inexact symmetric Gauss-Seidel based majorized ADMM for high-dimensional convex composite conic programming, Mathematical Programming, 161 (2017), 237-270.
doi: 10.1007/s10107-016-1007-5.
|
[9]
|
Y. Chen, Z. Luo and N. Xiu, Half thresholding eigenvalue algorithm for semidefinite matrix completion, Science China Mathematics, 58 (2015), 2015-2032.
doi: 10.1007/s11425-015-5052-y.
|
[10]
|
Y. Chen, N. Xiu and D. Peng, Global solutions of non-Lipschitz $S_2-S_ p$ minimization over the positive semidefinite cone, Optimization Letters, 8 (2014), 2053-2064.
doi: 10.1007/s11590-013-0701-y.
|
[11]
|
D. Donoho, De-Noising by soft thresholding, IEEE Transactions on Information Theory, 41 (1995), 613-627.
doi: 10.1109/18.382009.
|
[12]
|
A. Elgammal, R. Duraiswami, D. Harwood and L. Davis, Background and foreground modeling using nonparametric kernel density estimation for visual surveillance, Proceedings of the IEEE, 90 (2002), 1151-1163.
doi: 10.1109/JPROC.2002.801448.
|
[13]
|
M. Fazel, T. Pong, D. Sun and P. Tseng, Hankel matrix rank minimization with applications to system identification and realization, SIAM Journal on Matrix Analysis and Applications, 34 (2013), 946-977.
doi: 10.1137/110853996.
|
[14]
|
D. Gabay, Applications of the method of multipliers to variational inequalities, In: M. Fortin, R. Glowinski (Eds.), Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems. North-Holland, Amsterdam, The Netherlands, (1983), 299–331.
|
[15]
|
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximation, Computers and Mathematics with Applications, 2 (1976), 17-40.
doi: 10.1016/0898-1221(76)90003-1.
|
[16]
|
B. He, M. Tao and X. Yuan, Alternating direction method with Gaussian back substitution for separable convex programming, SIAM Journal on Optimization, 22 (2012), 313-340.
doi: 10.1137/110822347.
|
[17]
|
B. He and X. Yuan, On the $O(1/n)$ convergence rate of the Douglas-Rachford alternating direction method, SIAM Journal on Numerical Analysis, 50 (2012), 700-709.
doi: 10.1137/110836936.
|
[18]
|
M. Li, D. Sun and K. Toh, A convergent 3-block semi-proximal ADMM for convex minimization problems with one strongly convex block, Asia-Pacific Journal of Operational Research, 32 (2015), 1550024, 19pp.
doi: 10.1142/S0217595915500244.
|
[19]
|
X. Li, M. Ng and X. Yuan, Median filtering-based methods for static background extraction from surveillance video, Numerical Linear Algebra with Applications, 22 (2015), 845-865.
doi: 10.1002/nla.1981.
|
[20]
|
X. Li, D. Sun and K. Toh, A block symmetric Gauss-Seidel decomposition theorem for convex composite quadratic programming and its applications, Mathematical Programming, (2017), 1–24.
doi: 10.1007/s10107-018-1247-7.
|
[21]
|
J. Liu, S. Ji and J. Ye, Multi-task feature learning via efficient $\ell_{2, 1}$-norm minimization, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, (2012), 339–348.
|
[22]
|
L. Maddalena and A. Petrosino, A self-organizing approach to background subtraction for visual surveillance applications, IEEE Transactions on Image Processing, 17 (2008), 1168-1177.
doi: 10.1109/TIP.2008.924285.
|
[23]
|
B. Natarajan, Sparse approximate solutions to linear systems, SIAM Journal on Computing, 24 (1995), 227-234.
doi: 10.1137/S0097539792240406.
|
[24]
|
R. Rockfellar, Convex Analysis, Princeton University Press, 1970.
|
[25]
|
L. Rudin and S. Osher, Total variation based image restoration with free local constraints, Proceedings of IEEE International Conference on Image Processing, 1 (1994), 31-35.
doi: 10.1109/ICIP.1994.413269.
|
[26]
|
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.
doi: 10.1016/0167-2789(92)90242-F.
|
[27]
|
A. Sobral and A. Vacavant, A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos, Computer Vision and Image Understanding, 122 (2014), 4-21.
doi: 10.1016/j.cviu.2013.12.005.
|
[28]
|
C. Stauffer and W. Grimson, Adaptive background mixture models for real-time tracking, IEEE Conference on Computer Vision and Pattern Recognition, 2 (1999), 2246.
doi: 10.1109/CVPR.1999.784637.
|
[29]
|
X. Xiu and L. Kong, Rank-min-one and sparse tensor decomposition for surveillance video, Pacific Journal of Optimization, 11 (2015), 403-418.
|
[30]
|
L. Yang, T. Pong and X. Chen., Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction., SIAM Journal on Imaging Sciences, 10 (2017), 74-110.
doi: 10.1137/15M1027528.
|
[31]
|
X. Zhang, D. S. Pham, S. Venkatesh, W. Liu and D. Phung, Mixed-norm sparse representation for multi view face recognition, Pattern Recognition, 48 (2015), 2935-2946.
doi: 10.1016/j.patcog.2015.02.022.
|