
-
Previous Article
An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm
- JIMO Home
- This Issue
-
Next Article
Optimal inventory policy for fast-moving consumer goods under e-commerce environment
Supervised distance preserving projection using alternating direction method of multipliers
School of Mathematics, University of Dhaka, Bangladesh, School of Mathematics, University of Southampton, UK |
Supervised Distance Preserving Projection (SDPP) is a dimension reduction method in supervised setting proposed recently by Zhu et. al in [
References:
[1] |
E. Barshan, A. Ghodsi, Z. Azimifar and M. Z. Jahromi,
Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds, Pattern Recognit, 44 (2010), 1357-1371.
doi: 10.1016/j.patcog.2010.12.015. |
[2] |
J. Borwein and A. S. Lewis, Convex Analysis and Non Linear Optimization: Theory and Examples, Springer, New York, 2006.
doi: 10.1007/978-0-387-31256-9. |
[3] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein,
Distributed optimization and statistical learning via the alternating direction method of multipliers, Machine Learning, 3 (2010), 1-122.
|
[4] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441.![]() ![]() ![]() |
[5] |
M. R. Brito, E. L. Chávez, A. J. Quiroz and J. E. Yukich,
Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection, Stat. Probabil. Lett., 35 (1997), 33-42.
doi: 10.1016/S0167-7152(96)00213-1. |
[6] |
I. Cheng Yeh,
Modeling of strength of high performance concrete using artificial neural networks, Cement and Concrete Research, 28 (1998), 1797-1808.
doi: 10.1016/S0008-8846(98)00165-3. |
[7] |
F. Coronaa, Z. Zhu, A. H. d. Souza Jr, M. Mulasd, E. Muruf, L. Sassuf, G. Barretob and R. Baratti,
Supervised Distance Preserving Projections: Applications in the quantitative analysis of diesel fuels and light cycle oils from NIR spectra, Journal of Process Control, 30 (2015), 10-21.
doi: 10.1016/j.jprocont.2014.11.005. |
[8] |
J. Eckstein and D. P. Bertsekas,
On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204. |
[9] |
J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, Large Scale Optimization: State of the Art, (1993), 115–134. |
[10] |
J. Eckstein and W. Yao, Understanding the convergence of Alternating Direction Method of Multipliers, Theoritical and Computational Perspectives, RUTCOR Research Report, 2014. |
[11] |
R. A. Fisher,
The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7 (1936), 179-188.
doi: 10.1111/j.1469-1809.1936.tb02137.x. |
[12] |
M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, North-Holland Publishing Co., Amsterdam, 1983. |
[13] |
M. Fortin and R. Glowinski, On Decomposition-Coordination Methods Using an Augmented Lagrangian, Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, North-Holland: Amsterdam, 1983. |
[14] |
K. Fukumizu, F. R. Bach and M. Jordan,
Kernel dimension reduction in regression, Annals of Statistics, 37 (2009), 1871-1905.
doi: 10.1214/08-AOS637. |
[15] |
D. Gabay,
Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, studies in Mathematics, 15 (1983), 299-331.
|
[16] |
D. Gabay and B. Mercier,
A dual algorithm for the solution of nonlinearvariational problems via Finite element approximation, Computers and Mathematics with Applications, 2 (1976), 17-40.
|
[17] |
R. Glowinski, Lectures on Numerical Methods for Nonlinear Variational Problem, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay, Notes by M. G. Vijayasundaram and M. Adimurthi, 1980. |
[18] |
R. Glowinski and A. Marrocco, Sur l'approximation, par $\acute{e}l\acute{e}ments$ finis d'ordre un, et la $r\acute{e}$solution, par $p\acute{e}$nalisation-dualit$\acute{e}$, d'une classe de probl$\grave{e}$mes de dirichlet non lin$\acute{e}$ares, Revue Francaise d'Automatique, Informatique et Recherche Op$\acute{e}$rationelle, 9 (1975), 41–76. |
[19] |
R. Glowinski and P. L. Tallec, Augmented Lagrangian Methods for the Solution of Variational Problems, Studies in Applied and Numerical Mathematics, 1989.
doi: 10.1137/1.9781611970838.ch3. |
[20] |
J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-19721-5. |
[21] |
B. He, H. Yang and S. Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, Journal of Optimization Theory and Applications, 106 (2000), 337–356.
doi: 10.1023/A:1004603514434. |
[22] |
S. Jahan and H. D. Qi,
Regularized Multidimensional Scaling with Radial Basis Functions, Journal of Industrial and Management Optimization, 12 (2016), 543-563.
doi: 10.3934/jimo.2016.12.543. |
[23] |
K. Jiang, D. Sun and K.-C. Toh,
Solving nuclear norm regularized and semidefinite matrix least square problems with linear equality constraints, Discrete Geometry and Optimization, 69 (2013), 133-162.
doi: 10.1007/978-3-319-00200-2_9. |
[24] |
J. Lee and M. Verleysen, Nonlinear Dimensionality Reduction, Springer, New York, 2007.
doi: 10.1007/978-0-387-39351-3. |
[25] |
K. Li,
Sliced inverse regression for dimension reduction, J Am Stat Assoc, 86 (1991), 316-342.
doi: 10.1080/01621459.1991.10475035. |
[26] |
X. Li, D. Sun and K.-C. Toh, A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions,, Math. Program., 155 (2016), Ser. A, 333–373.
doi: 10.1007/s10107-014-0850-5. |
[27] |
L. J. P. Maaten, E. Postma and H. V. D. Herik, Dimensionality Reduction: A Comparative Review, Technical Report TiCC-TR 2009–005, Tilburg University Technical, Tilburg, 2009. |
[28] |
S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K. Mullers, Fisher discriminant analysis with kernels, Neural Networks for Signal Processing IX, Proceedings of the IEEE Signal Processing Society Workshop, IEEE, Piscataway, (2002), 41–48.
doi: 10.1109/NNSP.1999.788121. |
[29] |
H.-D. Qi and D. Sun,
An augmented Lagrangian dual approach for the H-weighted nearest correlation matrix problem, IMA Journal of Numerical Analysis, 31 (2011), 491-511.
doi: 10.1093/imanum/drp031. |
[30] |
H.-D. Qi, N. H. Xiu and X. M. Yuan,
A Lagrangian dual approach to the single source localization problem, IEEE Transactions on Signal Processing, 61 (2013), 3815-3826.
doi: 10.1109/TSP.2013.2264814. |
[31] |
R. T. Rockafellar,
Augmented lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97. |
[32] |
S. Roweis and L. Saul,
Nonlinear dimensionality reduction by locally linear embedding, Science, 290 (2000), 2323-2326.
|
[33] |
B. Schölkopf, A. Smola and K. Müller,
Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10 (1998), 1299-1319.
|
[34] |
D. Sun, K.-C. Toh and L. Yang,
A convergent 3-block semi-proximal alternating direction method of multipliers for conic programming with 4-type of constraints, SIAM Journal on Optimization, 25 (2015), 882-915.
doi: 10.1137/140964357. |
[35] |
J. Tenenbaum, V. Silva and J. Langford,
A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), 2319-2323.
|
[36] |
S. Theodoridis and K. Koutroumbas, An Introduction to Pattern Recognition, A MATLAB approach, Elsevier Inc., 2010. |
[37] |
S. Theodoridis and K. Koutroumbas, Pattern Recognition, Elsevier Inc., 2009. |
[38] |
A. Tsanas, M. A. Little, P. E. McSharry and L. O. Ramig,
Accurate telemonitoring of Parkinson.s disease progression by non-invasive speech tests, IEEE Transactions on Biomedical Engineering, 57 (2010), 884-893.
doi: 10.1109/TBME.2009.2036000. |
[39] |
J. Venna and S. Kaski,
Comparison of visualization methods for an atlas of gene expression data sets, Inf Vis, 6 (2007), 139-154.
doi: 10.1057/palgrave.ivs.9500153. |
[40] |
H. Wold, Soft modeling by latent variables: The nonlinear iterative partial least squares approach, Perspectives in Probability and Statistics, Papers in Honour of MS Bartlett, 1975,117–142.
doi: 10.1017/s0021900200047604. |
[41] |
H. Wold, Partial Least Squares, Encyclopedia of Statistical Sciences, 2009. |
[42] |
Y. Yeh Y, S. Huang and Y. Lee,
Nonlinear dimension reduction with kernel sliced inverse regression, IEEE Trans Knowl Data Eng, 21 (2009), 1590-1603.
|
[43] |
Z. Zhu, T. Simil$\ddot{a}$ and F. Corona,
Supervised distance preserving projection, Neural Processing Letters, 38 (2013), 445-463.
doi: 10.1007/s11063-013-9285-x. |
show all references
References:
[1] |
E. Barshan, A. Ghodsi, Z. Azimifar and M. Z. Jahromi,
Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds, Pattern Recognit, 44 (2010), 1357-1371.
doi: 10.1016/j.patcog.2010.12.015. |
[2] |
J. Borwein and A. S. Lewis, Convex Analysis and Non Linear Optimization: Theory and Examples, Springer, New York, 2006.
doi: 10.1007/978-0-387-31256-9. |
[3] |
S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein,
Distributed optimization and statistical learning via the alternating direction method of multipliers, Machine Learning, 3 (2010), 1-122.
|
[4] |
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
doi: 10.1017/CBO9780511804441.![]() ![]() ![]() |
[5] |
M. R. Brito, E. L. Chávez, A. J. Quiroz and J. E. Yukich,
Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection, Stat. Probabil. Lett., 35 (1997), 33-42.
doi: 10.1016/S0167-7152(96)00213-1. |
[6] |
I. Cheng Yeh,
Modeling of strength of high performance concrete using artificial neural networks, Cement and Concrete Research, 28 (1998), 1797-1808.
doi: 10.1016/S0008-8846(98)00165-3. |
[7] |
F. Coronaa, Z. Zhu, A. H. d. Souza Jr, M. Mulasd, E. Muruf, L. Sassuf, G. Barretob and R. Baratti,
Supervised Distance Preserving Projections: Applications in the quantitative analysis of diesel fuels and light cycle oils from NIR spectra, Journal of Process Control, 30 (2015), 10-21.
doi: 10.1016/j.jprocont.2014.11.005. |
[8] |
J. Eckstein and D. P. Bertsekas,
On the douglas-rachford splitting method and the proximal point algorithm for maximal monotone operators, Mathematical Programming, 55 (1992), 293-318.
doi: 10.1007/BF01581204. |
[9] |
J. Eckstein and M. Fukushima, Some reformulations and applications of the alternating direction method of multipliers, Large Scale Optimization: State of the Art, (1993), 115–134. |
[10] |
J. Eckstein and W. Yao, Understanding the convergence of Alternating Direction Method of Multipliers, Theoritical and Computational Perspectives, RUTCOR Research Report, 2014. |
[11] |
R. A. Fisher,
The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7 (1936), 179-188.
doi: 10.1111/j.1469-1809.1936.tb02137.x. |
[12] |
M. Fortin and R. Glowinski, Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, North-Holland Publishing Co., Amsterdam, 1983. |
[13] |
M. Fortin and R. Glowinski, On Decomposition-Coordination Methods Using an Augmented Lagrangian, Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, North-Holland: Amsterdam, 1983. |
[14] |
K. Fukumizu, F. R. Bach and M. Jordan,
Kernel dimension reduction in regression, Annals of Statistics, 37 (2009), 1871-1905.
doi: 10.1214/08-AOS637. |
[15] |
D. Gabay,
Applications of the method of multipliers to variational inequalities, in Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, studies in Mathematics, 15 (1983), 299-331.
|
[16] |
D. Gabay and B. Mercier,
A dual algorithm for the solution of nonlinearvariational problems via Finite element approximation, Computers and Mathematics with Applications, 2 (1976), 17-40.
|
[17] |
R. Glowinski, Lectures on Numerical Methods for Nonlinear Variational Problem, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Tata Institute of Fundamental Research, Bombay, Notes by M. G. Vijayasundaram and M. Adimurthi, 1980. |
[18] |
R. Glowinski and A. Marrocco, Sur l'approximation, par $\acute{e}l\acute{e}ments$ finis d'ordre un, et la $r\acute{e}$solution, par $p\acute{e}$nalisation-dualit$\acute{e}$, d'une classe de probl$\grave{e}$mes de dirichlet non lin$\acute{e}$ares, Revue Francaise d'Automatique, Informatique et Recherche Op$\acute{e}$rationelle, 9 (1975), 41–76. |
[19] |
R. Glowinski and P. L. Tallec, Augmented Lagrangian Methods for the Solution of Variational Problems, Studies in Applied and Numerical Mathematics, 1989.
doi: 10.1137/1.9781611970838.ch3. |
[20] |
J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, Springer-Verlag, Berlin, 2011.
doi: 10.1007/978-3-642-19721-5. |
[21] |
B. He, H. Yang and S. Wang, Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities, Journal of Optimization Theory and Applications, 106 (2000), 337–356.
doi: 10.1023/A:1004603514434. |
[22] |
S. Jahan and H. D. Qi,
Regularized Multidimensional Scaling with Radial Basis Functions, Journal of Industrial and Management Optimization, 12 (2016), 543-563.
doi: 10.3934/jimo.2016.12.543. |
[23] |
K. Jiang, D. Sun and K.-C. Toh,
Solving nuclear norm regularized and semidefinite matrix least square problems with linear equality constraints, Discrete Geometry and Optimization, 69 (2013), 133-162.
doi: 10.1007/978-3-319-00200-2_9. |
[24] |
J. Lee and M. Verleysen, Nonlinear Dimensionality Reduction, Springer, New York, 2007.
doi: 10.1007/978-0-387-39351-3. |
[25] |
K. Li,
Sliced inverse regression for dimension reduction, J Am Stat Assoc, 86 (1991), 316-342.
doi: 10.1080/01621459.1991.10475035. |
[26] |
X. Li, D. Sun and K.-C. Toh, A Schur complement based semi-proximal ADMM for convex quadratic conic programming and extensions,, Math. Program., 155 (2016), Ser. A, 333–373.
doi: 10.1007/s10107-014-0850-5. |
[27] |
L. J. P. Maaten, E. Postma and H. V. D. Herik, Dimensionality Reduction: A Comparative Review, Technical Report TiCC-TR 2009–005, Tilburg University Technical, Tilburg, 2009. |
[28] |
S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K. Mullers, Fisher discriminant analysis with kernels, Neural Networks for Signal Processing IX, Proceedings of the IEEE Signal Processing Society Workshop, IEEE, Piscataway, (2002), 41–48.
doi: 10.1109/NNSP.1999.788121. |
[29] |
H.-D. Qi and D. Sun,
An augmented Lagrangian dual approach for the H-weighted nearest correlation matrix problem, IMA Journal of Numerical Analysis, 31 (2011), 491-511.
doi: 10.1093/imanum/drp031. |
[30] |
H.-D. Qi, N. H. Xiu and X. M. Yuan,
A Lagrangian dual approach to the single source localization problem, IEEE Transactions on Signal Processing, 61 (2013), 3815-3826.
doi: 10.1109/TSP.2013.2264814. |
[31] |
R. T. Rockafellar,
Augmented lagrangians and applications of the proximal point algorithm in convex programming, Mathematics of Operations Research, 1 (1976), 97-116.
doi: 10.1287/moor.1.2.97. |
[32] |
S. Roweis and L. Saul,
Nonlinear dimensionality reduction by locally linear embedding, Science, 290 (2000), 2323-2326.
|
[33] |
B. Schölkopf, A. Smola and K. Müller,
Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10 (1998), 1299-1319.
|
[34] |
D. Sun, K.-C. Toh and L. Yang,
A convergent 3-block semi-proximal alternating direction method of multipliers for conic programming with 4-type of constraints, SIAM Journal on Optimization, 25 (2015), 882-915.
doi: 10.1137/140964357. |
[35] |
J. Tenenbaum, V. Silva and J. Langford,
A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), 2319-2323.
|
[36] |
S. Theodoridis and K. Koutroumbas, An Introduction to Pattern Recognition, A MATLAB approach, Elsevier Inc., 2010. |
[37] |
S. Theodoridis and K. Koutroumbas, Pattern Recognition, Elsevier Inc., 2009. |
[38] |
A. Tsanas, M. A. Little, P. E. McSharry and L. O. Ramig,
Accurate telemonitoring of Parkinson.s disease progression by non-invasive speech tests, IEEE Transactions on Biomedical Engineering, 57 (2010), 884-893.
doi: 10.1109/TBME.2009.2036000. |
[39] |
J. Venna and S. Kaski,
Comparison of visualization methods for an atlas of gene expression data sets, Inf Vis, 6 (2007), 139-154.
doi: 10.1057/palgrave.ivs.9500153. |
[40] |
H. Wold, Soft modeling by latent variables: The nonlinear iterative partial least squares approach, Perspectives in Probability and Statistics, Papers in Honour of MS Bartlett, 1975,117–142.
doi: 10.1017/s0021900200047604. |
[41] |
H. Wold, Partial Least Squares, Encyclopedia of Statistical Sciences, 2009. |
[42] |
Y. Yeh Y, S. Huang and Y. Lee,
Nonlinear dimension reduction with kernel sliced inverse regression, IEEE Trans Knowl Data Eng, 21 (2009), 1590-1603.
|
[43] |
Z. Zhu, T. Simil$\ddot{a}$ and F. Corona,
Supervised distance preserving projection, Neural Processing Letters, 38 (2013), 445-463.
doi: 10.1007/s11063-013-9285-x. |





Dataset | Dim | Class | no. of ins. | Source | |
Classification | Seismic bump | 19 | 2 | 2584 | UCI Repository |
Cardiotocography | 21 | 3 | 2126 | UCI Repository | |
Diabetic Retinopathy | 19 | 2 | 1115 | UCI Repository | |
Mushroom | 22 | 2 | 8124 | UCI Repository | |
Regression | Parkinson's Telemonitoring | 16 | - | 5875 | UCI Repository |
Concrete Compressive Strength | 8 | - | 1030 | UCI Repository |
Dataset | Dim | Class | no. of ins. | Source | |
Classification | Seismic bump | 19 | 2 | 2584 | UCI Repository |
Cardiotocography | 21 | 3 | 2126 | UCI Repository | |
Diabetic Retinopathy | 19 | 2 | 1115 | UCI Repository | |
Mushroom | 22 | 2 | 8124 | UCI Repository | |
Regression | Parkinson's Telemonitoring | 16 | - | 5875 | UCI Repository |
Concrete Compressive Strength | 8 | - | 1030 | UCI Repository |
Method | RMSE (mean |
MAE (mean |
SLS-SDPP | 10.6781 |
8.3503 |
SDPP | 10.7934 |
8.7459 |
PLS | 10.8133 |
8.7822 |
SPCA | 10.8006 |
8.7714 |
KDR | 10.8478 |
8.8008 |
Method | RMSE (mean |
MAE (mean |
SLS-SDPP | 10.6781 |
8.3503 |
SDPP | 10.7934 |
8.7459 |
PLS | 10.8133 |
8.7822 |
SPCA | 10.8006 |
8.7714 |
KDR | 10.8478 |
8.8008 |
Error | Dim | SLS-SDPP | SDPP | PLS | SPCA | KDR |
RMSE | 1 | 10.4649 |
10.5241 |
12.7666 |
12.8090 |
13.7423 |
2 | 10.4540 |
10.4075 |
11.8629 |
12.8712 |
11.6399 |
|
3 | 10.4629 |
10.4079 |
10.9379 |
12.8370 |
11.5163 |
|
4 | 10.4450 |
10.5890 |
10.5108 |
12.8674 |
11.0320 |
|
5 | 10.2932 |
10.7247 |
10.4432 |
12.9647 |
10.2933 |
|
6 | 10.9910 |
10.4893 |
10.4359 |
10.4770 |
10.4473 |
|
7 | 10.4495 |
10.5313 |
10.4480 |
10.4520 |
10.4514 |
|
8 | 10.4349 |
10.4342 |
10.4342 |
10.4342 |
16.3019 |
|
MAE | 1 | 8.3879 |
8.3687 |
10.3995 |
10.4451 |
10.8884 |
2 | 8.2339 |
8.2338 |
9.3977 |
10.4484 |
9.2285 |
|
3 | 8.2288 |
8.2342 |
8.3771 |
10.4125 |
8.9818 |
|
4 | 8.5898 |
8.3935 |
8.2199 |
10.4553 |
8.6622 |
|
5 | 8.0177 |
8.5133 |
8.1563 |
10.5221 |
8.0167 |
|
6 | 8.3434 |
8.2713 |
8.1612 |
8.1860 |
8.1659 |
|
7 | 8.2747 |
8.2820 |
8.1869 |
8.1872 |
8.1868 |
|
8 | 8.1852 |
8.1842 |
8.1842 |
8.1842 |
13.1814 |
Error | Dim | SLS-SDPP | SDPP | PLS | SPCA | KDR |
RMSE | 1 | 10.4649 |
10.5241 |
12.7666 |
12.8090 |
13.7423 |
2 | 10.4540 |
10.4075 |
11.8629 |
12.8712 |
11.6399 |
|
3 | 10.4629 |
10.4079 |
10.9379 |
12.8370 |
11.5163 |
|
4 | 10.4450 |
10.5890 |
10.5108 |
12.8674 |
11.0320 |
|
5 | 10.2932 |
10.7247 |
10.4432 |
12.9647 |
10.2933 |
|
6 | 10.9910 |
10.4893 |
10.4359 |
10.4770 |
10.4473 |
|
7 | 10.4495 |
10.5313 |
10.4480 |
10.4520 |
10.4514 |
|
8 | 10.4349 |
10.4342 |
10.4342 |
10.4342 |
16.3019 |
|
MAE | 1 | 8.3879 |
8.3687 |
10.3995 |
10.4451 |
10.8884 |
2 | 8.2339 |
8.2338 |
9.3977 |
10.4484 |
9.2285 |
|
3 | 8.2288 |
8.2342 |
8.3771 |
10.4125 |
8.9818 |
|
4 | 8.5898 |
8.3935 |
8.2199 |
10.4553 |
8.6622 |
|
5 | 8.0177 |
8.5133 |
8.1563 |
10.5221 |
8.0167 |
|
6 | 8.3434 |
8.2713 |
8.1612 |
8.1860 |
8.1659 |
|
7 | 8.2747 |
8.2820 |
8.1869 |
8.1872 |
8.1868 |
|
8 | 8.1852 |
8.1842 |
8.1842 |
8.1842 |
13.1814 |
Error | Dim | SLS-SDPP | SDPP | SPCA | KDR | FDA |
Error Rate | 2 | 0.2251 | 0.2865 | 0.2739 | 0.2593 | 0.208 |
3 | 0.1940 | 0.2827 | 0.2661 | 0.2992 | 0.208 | |
4 | 0.1949 | 0.2943 | 0.3314 | 0.2427 | 0.208 | |
5 | 0.1969 | 0.2661 | 0.3372 | 0.2437 | 0.208 | |
6 | 0.1969 | 0.2749 | 0.2710 | 0.2115 | 0.208 | |
7 | 0.1988 | 0.2827 | 0.2768 | 0.2193 | 0.208 | |
8 | 0.1979 | 0.2768 | 0.2817 | 0.2300 | 0.208 | |
9 | 0.1988 | 0.2700 | 0.2612 | 0.2315 | 0.208 | |
10 | 0.1949 | 0.2690 | 0.2515 | 0.2412 | 0.208 |
Error | Dim | SLS-SDPP | SDPP | SPCA | KDR | FDA |
Error Rate | 2 | 0.2251 | 0.2865 | 0.2739 | 0.2593 | 0.208 |
3 | 0.1940 | 0.2827 | 0.2661 | 0.2992 | 0.208 | |
4 | 0.1949 | 0.2943 | 0.3314 | 0.2427 | 0.208 | |
5 | 0.1969 | 0.2661 | 0.3372 | 0.2437 | 0.208 | |
6 | 0.1969 | 0.2749 | 0.2710 | 0.2115 | 0.208 | |
7 | 0.1988 | 0.2827 | 0.2768 | 0.2193 | 0.208 | |
8 | 0.1979 | 0.2768 | 0.2817 | 0.2300 | 0.208 | |
9 | 0.1988 | 0.2700 | 0.2612 | 0.2315 | 0.208 | |
10 | 0.1949 | 0.2690 | 0.2515 | 0.2412 | 0.208 |
Error | Dim | SLS-SDPP | SDPP | SPCA | KDR | FDA |
Error Rate | 1 | 0.0328 | 0.0328 | 0.0328 | 0.0328 | 0.0328 |
2 | 0.0701 | 0.0707 | 0.1004 | 0.0688 | 0.0328 | |
3 | 0.0701 | 0.0669 | 0.0694 | 0.0669 | 0.0328 | |
4 | 0.0701 | 0.0720 | 0.0676 | 0.0720 | 0.032 | |
5 | 0.0701 | 0.0720 | 0.0732 | 0.0726 | 0.0328 | |
6 | 0.0701 | 0.0713 | 0.0789 | 0.0728 | 0.0328 | |
7 | 0.0701 | 0.0713 | 0.0789 | 0.0727 | 0.0328 | |
8 | 0.0701 | 0.0713 | 0.0795 | 0.0729 | 0.0328 | |
9 | 0.0701 | 0.0713 | 0.0795 | 0.0730 | 0.0328 | |
10 | 0.0701 | 0.0713 | 0.0795 | 0.0730 | 0.0328 |
Error | Dim | SLS-SDPP | SDPP | SPCA | KDR | FDA |
Error Rate | 1 | 0.0328 | 0.0328 | 0.0328 | 0.0328 | 0.0328 |
2 | 0.0701 | 0.0707 | 0.1004 | 0.0688 | 0.0328 | |
3 | 0.0701 | 0.0669 | 0.0694 | 0.0669 | 0.0328 | |
4 | 0.0701 | 0.0720 | 0.0676 | 0.0720 | 0.032 | |
5 | 0.0701 | 0.0720 | 0.0732 | 0.0726 | 0.0328 | |
6 | 0.0701 | 0.0713 | 0.0789 | 0.0728 | 0.0328 | |
7 | 0.0701 | 0.0713 | 0.0789 | 0.0727 | 0.0328 | |
8 | 0.0701 | 0.0713 | 0.0795 | 0.0729 | 0.0328 | |
9 | 0.0701 | 0.0713 | 0.0795 | 0.0730 | 0.0328 | |
10 | 0.0701 | 0.0713 | 0.0795 | 0.0730 | 0.0328 |
Error | Dim | SLS-SDPP | SDPP | SPCA | KDR | FDA |
Error Rate | 1 | 0.6382 | 0.6382 | 0.6382 | 0.6382 | 0.6382 |
2 | 0.2678 | 0.3390 | 0.2963 | 0.2934 | 0.6382 | |
3 | 0.2678 | 0.3105 | 0.3618 | 0.2963 | 0.6382 | |
4 | 0.2678 | 0.3191 | 0.2877 | 0.3048 | 0.6382 | |
5 | 0.2678 | 0.2934 | 0.2906 | 0.3134 | 0.6382 | |
6 | 0.2678 | 0.2849 | 0.2877 | 0.3048 | 0.6382 | |
7 | 0.2735 | 0.3191 | 0.2963 | 0.3048 | 0.6382 | |
8 | 0.2707 | 0.3191 | 0.2934 | 0.3134 | 0.6382 | |
9 | 0.2707 | 0.2906 | 0.2906 | 0.3134 | 0.6382 | |
10 | 0.2678 | 0.3020 | 0.3077 | 0.3048 | 0.6382 |
Error | Dim | SLS-SDPP | SDPP | SPCA | KDR | FDA |
Error Rate | 1 | 0.6382 | 0.6382 | 0.6382 | 0.6382 | 0.6382 |
2 | 0.2678 | 0.3390 | 0.2963 | 0.2934 | 0.6382 | |
3 | 0.2678 | 0.3105 | 0.3618 | 0.2963 | 0.6382 | |
4 | 0.2678 | 0.3191 | 0.2877 | 0.3048 | 0.6382 | |
5 | 0.2678 | 0.2934 | 0.2906 | 0.3134 | 0.6382 | |
6 | 0.2678 | 0.2849 | 0.2877 | 0.3048 | 0.6382 | |
7 | 0.2735 | 0.3191 | 0.2963 | 0.3048 | 0.6382 | |
8 | 0.2707 | 0.3191 | 0.2934 | 0.3134 | 0.6382 | |
9 | 0.2707 | 0.2906 | 0.2906 | 0.3134 | 0.6382 | |
10 | 0.2678 | 0.3020 | 0.3077 | 0.3048 | 0.6382 |
Error | Dim | SLS-SDPP | SDPP | SPCA | KDR | FDA |
Error Rate | 1 | 0.2486 | 0.2486 | 0.2486 | 0.2486 | 0.2486 |
2 | 0.3555 | 0.1318 | 0.2735 | 0.3037 | 0.2486 | |
3 | 0.2891 | 0.1266 | 0.1836 | 0.2741 | 0.2486 | |
4 | 0.1516 | 0.2076 | 0.2020 | 0.2018 | 0.2486 | |
5 | 0.1648 | 0.2524 | 0.1911 | 0.2311 | 0.2486 | |
6 | 0.1667 | 0.2524 | 0.3785 | 0.3815 | 0.2486 | |
7 | 0.1723 | 0.2693 | 0.3653 | 0.3544 | 0.2486 | |
8 | 0.1728 | 0.2255 | 0.3630 | 0.2587 | 0.2486 | |
9 | 0.1186 | 0.2655 | 0.1756 | 0.1615 | 0.2486 | |
10 | 0.1427 | 0.2665 | 0.3545 | 0.2812 | 0.2486 |
Error | Dim | SLS-SDPP | SDPP | SPCA | KDR | FDA |
Error Rate | 1 | 0.2486 | 0.2486 | 0.2486 | 0.2486 | 0.2486 |
2 | 0.3555 | 0.1318 | 0.2735 | 0.3037 | 0.2486 | |
3 | 0.2891 | 0.1266 | 0.1836 | 0.2741 | 0.2486 | |
4 | 0.1516 | 0.2076 | 0.2020 | 0.2018 | 0.2486 | |
5 | 0.1648 | 0.2524 | 0.1911 | 0.2311 | 0.2486 | |
6 | 0.1667 | 0.2524 | 0.3785 | 0.3815 | 0.2486 | |
7 | 0.1723 | 0.2693 | 0.3653 | 0.3544 | 0.2486 | |
8 | 0.1728 | 0.2255 | 0.3630 | 0.2587 | 0.2486 | |
9 | 0.1186 | 0.2655 | 0.1756 | 0.1615 | 0.2486 | |
10 | 0.1427 | 0.2665 | 0.3545 | 0.2812 | 0.2486 |
[1] |
Russell E. Warren, Stanley J. Osher. Hyperspectral unmixing by the alternating direction method of multipliers. Inverse Problems and Imaging, 2015, 9 (3) : 917-933. doi: 10.3934/ipi.2015.9.917 |
[2] |
Bingsheng He, Xiaoming Yuan. Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 247-260. doi: 10.3934/naco.2013.3.247 |
[3] |
Zhongming Wu, Xingju Cai, Deren Han. Linearized block-wise alternating direction method of multipliers for multiple-block convex programming. Journal of Industrial and Management Optimization, 2018, 14 (3) : 833-855. doi: 10.3934/jimo.2017078 |
[4] |
Jie-Wen He, Chi-Chon Lei, Chen-Yang Shi, Seak-Weng Vong. An inexact alternating direction method of multipliers for a kind of nonlinear complementarity problems. Numerical Algebra, Control and Optimization, 2021, 11 (3) : 353-362. doi: 10.3934/naco.2020030 |
[5] |
Yuan Shen, Lei Ji. Partial convolution for total variation deblurring and denoising by new linearized alternating direction method of multipliers with extension step. Journal of Industrial and Management Optimization, 2019, 15 (1) : 159-175. doi: 10.3934/jimo.2018037 |
[6] |
Yan Gu, Nobuo Yamashita. Alternating direction method of multipliers with variable metric indefinite proximal terms for convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 487-510. doi: 10.3934/naco.2020047 |
[7] |
Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 2 (2) : 95-106. doi: 10.3934/mfc.2019008 |
[8] |
Sobhan Seyfaddini. Unboundedness of the Lagrangian Hofer distance in the Euclidean ball. Electronic Research Announcements, 2014, 21: 1-7. doi: 10.3934/era.2014.21.1 |
[9] |
Yue Lu, Ying-En Ge, Li-Wei Zhang. An alternating direction method for solving a class of inverse semi-definite quadratic programming problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 317-336. doi: 10.3934/jimo.2016.12.317 |
[10] |
Peter Frolkovič, Karol Mikula, Jozef Urbán. Distance function and extension in normal direction for implicitly defined interfaces. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 871-880. doi: 10.3934/dcdss.2015.8.871 |
[11] |
Foxiang Liu, Lingling Xu, Yuehong Sun, Deren Han. A proximal alternating direction method for multi-block coupled convex optimization. Journal of Industrial and Management Optimization, 2019, 15 (2) : 723-737. doi: 10.3934/jimo.2018067 |
[12] |
Yi Xu, Wenyu Sun. A filter successive linear programming method for nonlinear semidefinite programming problems. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 193-206. doi: 10.3934/naco.2012.2.193 |
[13] |
Rhudaina Z. Mohammad, Karel Švadlenka. Multiphase volume-preserving interface motions via localized signed distance vector scheme. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 969-988. doi: 10.3934/dcdss.2015.8.969 |
[14] |
José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921 |
[15] |
Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565 |
[16] |
Feng Ma, Jiansheng Shu, Yaxiong Li, Jian Wu. The dual step size of the alternating direction method can be larger than 1.618 when one function is strongly convex. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1173-1185. doi: 10.3934/jimo.2020016 |
[17] |
Qinghong Zhang, Gang Chen, Ting Zhang. Duality formulations in semidefinite programming. Journal of Industrial and Management Optimization, 2010, 6 (4) : 881-893. doi: 10.3934/jimo.2010.6.881 |
[18] |
Hao Chen, Kaitai Li, Yuchuan Chu, Zhiqiang Chen, Yiren Yang. A dimension splitting and characteristic projection method for three-dimensional incompressible flow. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 127-147. doi: 10.3934/dcdsb.2018111 |
[19] |
Y. Goto, K. Ishii, T. Ogawa. Method of the distance function to the Bence-Merriman-Osher algorithm for motion by mean curvature. Communications on Pure and Applied Analysis, 2005, 4 (2) : 311-339. doi: 10.3934/cpaa.2005.4.311 |
[20] |
Yunhai Xiao, Soon-Yi Wu, Bing-Sheng He. A proximal alternating direction method for $\ell_{2,1}$-norm least squares problem in multi-task feature learning. Journal of Industrial and Management Optimization, 2012, 8 (4) : 1057-1069. doi: 10.3934/jimo.2012.8.1057 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]