# American Institute of Mathematical Sciences

July  2020, 16(4): 1801-1834. doi: 10.3934/jimo.2019030

## An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm

 Department of Industrial Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran

Received  February 2018 Revised  October 2018 Published  July 2020 Early access  May 2019

The aim of this research is to study the dynamic facility layout and job-shop scheduling problems, simultaneously. In fact, this paper intends to measure the synergy between these two problems. In this paper, a multi-objective mixed integer nonlinear programming model has been proposed where areas of departments are unequal. Using a new approach, this paper calculates the farness rating scores of departments beside their closeness rating scores. Another feature of this paper is the consideration of input and output points for each department, which is crucial for the establishment of practical facility layouts in the real world. In the scheduling problem, transportation delay between departments and machines' setup time are considered that affect the dynamic facility layout problem. This integrated problem is solved using a hybrid two-phase algorithm. In the first phase, this hybrid algorithm incorporates the non-dominated sorting genetic algorithm. The second phase also applies two local search algorithms. To increase the efficacy of the first phase, we have tuned the parameters of this phase using the Taguchi experimental design method. Then, we have randomly generated 20 instances of different sizes. The numerical results show that the second phase of the hybrid algorithm improves its first phase significantly. The results also demonstrate that the simultaneous optimization of those two problems decreases the mean flow time of jobs by about 10% as compared to their separate optimization.

Citation: Behrad Erfani, Sadoullah Ebrahimnejad, Amirhossein Moosavi. An integrated dynamic facility layout and job shop scheduling problem: A hybrid NSGA-II and local search algorithm. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1801-1834. doi: 10.3934/jimo.2019030
##### References:
 [1] A. D. Asl and K. Y. Wong, Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization, Journal of Intelligent Manufacturing, 28 (2017), 1317-1336.  doi: 10.1007/s10845-015-1053-5. [2] C. Bierwirth and J. Kuhpfahl, Extended GRASP for the job shop scheduling problem with total weighted tardiness objective, European Journal of Operational Research, 261 (2017), 835-848.  doi: 10.1016/j.ejor.2017.03.030. [3] H. X. Chen and H. C. Lau, A math-heuristic approach for integrated resource scheduling in a maritime logistics facility, 2011 IEEE International Conference on Industrial Engineering and Engineering Management, (2011). doi: 10.1109/IEEM.2011.6117906. [4] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on Evolutionary Computation, 6 (2002), 182-197.  doi: 10.1109/4235.996017. [5] S. Emami and A. S. Nookabadi, Managing a new multi-objective model for the dynamic facility layout problem, The International Journal of Advanced Manufacturing Technology, 68 (2013), 2215-2228.  doi: 10.1007/s00170-013-4820-5. [6] X. Hao, M. Gen, L. Lin and G. A. Suer, Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem, Journal of Intelligent Manufacturing, 28 (2017), 833-845.  doi: 10.1007/s10845-014-1026-0. [7] M. Kaveh, V. M. Dalfard and S. Amiri, A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints, Neural Computing and Applications, 24 (2014), 1179-1190.  doi: 10.1007/s00521-013-1339-5. [8] N. Khilwani, R. Shankar and M. Tiwari, Facility layout problem: An approach based on a group decision-making system and psychoclonal algorithm, International Journal of Production Research, 46 (2008), 895-927.  doi: 10.1080/00207540600943993. [9] R. Kolisch, A. Sprecher and A. Drexl, Characterization and generation of a general class of resource-constrained project scheduling problems, Management Science, 41 (1995), 1693-1703.  doi: 10.1287/mnsc.41.10.1693. [10] J. Liu, D. Wang, K. He and Y. Xue, Combining Wang-Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem, European Journal of Operational Research, 262 (2017), 1052-1063.  doi: 10.1016/j.ejor.2017.04.002. [11] G. Mavrotas, Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Applied Mathematics and Computation, 213 (2009), 455-465.  doi: 10.1016/j.amc.2009.03.037. [12] A. R. McKendall and A. Hakobyan, Heuristics for the dynamic facility layout problem with unequal-area departments, European Journal of Operational Research, 201 (2010), 171-182.  doi: 10.1016/j.ejor.2009.02.028. [13] N. Mladenović and P. Hansen, Variable neighborhood search, Computers & Operations Research, 11 (1997), 1097-1100.  doi: 10.1016/S0305-0548(97)00031-2. [14] A. Mohamadi, S. Ebrahimnejad and R. Tavakkoli-Moghaddam, A novel two-stage approach for solving a bi-objective facility layout problem, International Journal of Operational Research, 31 (2018), 49-87.  doi: 10.1504/IJOR.2018.088557. [15] A. Moosavi and S. Ebrahimnejad, Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization, Computers & Industrial Engineering, 120 (2018), 216-233.  doi: 10.1016/j.cie.2018.04.047. [16] N. Nekooghadirli, R. Tavakkoli-Moghaddam, V. R. Ghezavati and S. Javanmard, Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics, Computers & Industrial Engineering, 76 (2014), 204-221.  doi: 10.1016/j.cie.2014.08.004. [17] M. Pirayesh and S. Poormoaied, Location and job shop scheduling problem in fuzzy environment, 5th Int. Conference of the Iranian Society of Operations Research, Azarbaijan, Iran, (2012). [18] H. Pourvaziri and H. Pierreval, Dynamic facility layout problem based on open queuing network theory, European Journal of Operational Research, 259 (2017), 538-553.  doi: 10.1016/j.ejor.2016.11.011. [19] K. S. N. Ripon and J. Torresen, Integrated job shop scheduling and layout planning: a hybrid evolutionary method for optimizing multiple objectives, Evolving Systems, 5 (2014), 121-132.  doi: 10.1007/s12530-013-9092-7. [20] K. S. N. Ripon, C. H. Tsang and S. Kwong, An evolutionary approach for solving the multi-objective job-shop scheduling problem, In Evolutionary Scheduling, 2007,165–195, Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-48584-1_7. [21] M. H. Salmani, K. Eshghi and H. Neghabi, A bi-objective MIP model for facility layout problem in uncertain environment, The International Journal of Advanced Manufacturing Technology, 81 (2015), 1563-1575.  doi: 10.1007/s00170-015-7290-0. [22] H. Samarghandi, P. Taabayan and M. Behroozi, Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings, The International Journal of Advanced Manufacturing Technology, 67 (2013), 2701-2715.  doi: 10.1007/s00170-012-4685-z. [23] J. Shahrabi, M. A. Adibi and M. Mahootchi, A reinforcement learning approach to parameter estimation in dynamic job shop scheduling, Computers & Industrial Engineering, 110 (2017), 75-82.  doi: 10.1016/j.cie.2017.05.026. [24] A. Srinivasan, Integrating Block Layout Design and Location of Input and Output Points in Facility Layout Problems, M.Sc. thesis, Concordia University in Canada, 2014. [25] C. R. Vela, R. Varela and M. A. González, Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times, Journal of Heuristics, 16 (2010), 139-165.  doi: 10.1007/s10732-008-9094-y. [26] L. Wang, Combining facility layout redesign and dynamic routing for job-shop assembly operations, 2011 IEEE International Symposium on Assembly and Manufacturing, Tampere, Finland, (2011). doi: 10.1109/ISAM.2011.5942302. [27] L. Wang, S. Keshavarzmanesh and H. Y. Feng, A hybrid approach for dynamic assembly shop floor layout, 2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, (2010). doi: 10.1109/COASE.2010.5584219. [28] L. Wang, H. Wu, F. Tang and D. Z. Zheng, A hybrid quantum-inspired genetic algorithm for flow shop scheduling, International Conference on Intelligent Computing, Berlin, Heidelberg, (2005), 636–644. doi: 10.1007/11538356_66. [29] C. L. Yang, S. P. Chuang and T. S. Hsu, A genetic algorithm for dynamic facility planning in job shop manufacturing, The International Journal of Advanced Manufacturing Technology, 52 (2011), 303-309.  doi: 10.1007/s00170-010-2733-0.

show all references

##### References:
 [1] A. D. Asl and K. Y. Wong, Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization, Journal of Intelligent Manufacturing, 28 (2017), 1317-1336.  doi: 10.1007/s10845-015-1053-5. [2] C. Bierwirth and J. Kuhpfahl, Extended GRASP for the job shop scheduling problem with total weighted tardiness objective, European Journal of Operational Research, 261 (2017), 835-848.  doi: 10.1016/j.ejor.2017.03.030. [3] H. X. Chen and H. C. Lau, A math-heuristic approach for integrated resource scheduling in a maritime logistics facility, 2011 IEEE International Conference on Industrial Engineering and Engineering Management, (2011). doi: 10.1109/IEEM.2011.6117906. [4] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on Evolutionary Computation, 6 (2002), 182-197.  doi: 10.1109/4235.996017. [5] S. Emami and A. S. Nookabadi, Managing a new multi-objective model for the dynamic facility layout problem, The International Journal of Advanced Manufacturing Technology, 68 (2013), 2215-2228.  doi: 10.1007/s00170-013-4820-5. [6] X. Hao, M. Gen, L. Lin and G. A. Suer, Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem, Journal of Intelligent Manufacturing, 28 (2017), 833-845.  doi: 10.1007/s10845-014-1026-0. [7] M. Kaveh, V. M. Dalfard and S. Amiri, A new intelligent algorithm for dynamic facility layout problem in state of fuzzy constraints, Neural Computing and Applications, 24 (2014), 1179-1190.  doi: 10.1007/s00521-013-1339-5. [8] N. Khilwani, R. Shankar and M. Tiwari, Facility layout problem: An approach based on a group decision-making system and psychoclonal algorithm, International Journal of Production Research, 46 (2008), 895-927.  doi: 10.1080/00207540600943993. [9] R. Kolisch, A. Sprecher and A. Drexl, Characterization and generation of a general class of resource-constrained project scheduling problems, Management Science, 41 (1995), 1693-1703.  doi: 10.1287/mnsc.41.10.1693. [10] J. Liu, D. Wang, K. He and Y. Xue, Combining Wang-Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem, European Journal of Operational Research, 262 (2017), 1052-1063.  doi: 10.1016/j.ejor.2017.04.002. [11] G. Mavrotas, Effective implementation of the $\epsilon$-constraint method in multi-objective mathematical programming problems, Applied Mathematics and Computation, 213 (2009), 455-465.  doi: 10.1016/j.amc.2009.03.037. [12] A. R. McKendall and A. Hakobyan, Heuristics for the dynamic facility layout problem with unequal-area departments, European Journal of Operational Research, 201 (2010), 171-182.  doi: 10.1016/j.ejor.2009.02.028. [13] N. Mladenović and P. Hansen, Variable neighborhood search, Computers & Operations Research, 11 (1997), 1097-1100.  doi: 10.1016/S0305-0548(97)00031-2. [14] A. Mohamadi, S. Ebrahimnejad and R. Tavakkoli-Moghaddam, A novel two-stage approach for solving a bi-objective facility layout problem, International Journal of Operational Research, 31 (2018), 49-87.  doi: 10.1504/IJOR.2018.088557. [15] A. Moosavi and S. Ebrahimnejad, Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization, Computers & Industrial Engineering, 120 (2018), 216-233.  doi: 10.1016/j.cie.2018.04.047. [16] N. Nekooghadirli, R. Tavakkoli-Moghaddam, V. R. Ghezavati and S. Javanmard, Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics, Computers & Industrial Engineering, 76 (2014), 204-221.  doi: 10.1016/j.cie.2014.08.004. [17] M. Pirayesh and S. Poormoaied, Location and job shop scheduling problem in fuzzy environment, 5th Int. Conference of the Iranian Society of Operations Research, Azarbaijan, Iran, (2012). [18] H. Pourvaziri and H. Pierreval, Dynamic facility layout problem based on open queuing network theory, European Journal of Operational Research, 259 (2017), 538-553.  doi: 10.1016/j.ejor.2016.11.011. [19] K. S. N. Ripon and J. Torresen, Integrated job shop scheduling and layout planning: a hybrid evolutionary method for optimizing multiple objectives, Evolving Systems, 5 (2014), 121-132.  doi: 10.1007/s12530-013-9092-7. [20] K. S. N. Ripon, C. H. Tsang and S. Kwong, An evolutionary approach for solving the multi-objective job-shop scheduling problem, In Evolutionary Scheduling, 2007,165–195, Springer, Berlin, Heidelberg. doi: 10.1007/978-3-540-48584-1_7. [21] M. H. Salmani, K. Eshghi and H. Neghabi, A bi-objective MIP model for facility layout problem in uncertain environment, The International Journal of Advanced Manufacturing Technology, 81 (2015), 1563-1575.  doi: 10.1007/s00170-015-7290-0. [22] H. Samarghandi, P. Taabayan and M. Behroozi, Metaheuristics for fuzzy dynamic facility layout problem with unequal area constraints and closeness ratings, The International Journal of Advanced Manufacturing Technology, 67 (2013), 2701-2715.  doi: 10.1007/s00170-012-4685-z. [23] J. Shahrabi, M. A. Adibi and M. Mahootchi, A reinforcement learning approach to parameter estimation in dynamic job shop scheduling, Computers & Industrial Engineering, 110 (2017), 75-82.  doi: 10.1016/j.cie.2017.05.026. [24] A. Srinivasan, Integrating Block Layout Design and Location of Input and Output Points in Facility Layout Problems, M.Sc. thesis, Concordia University in Canada, 2014. [25] C. R. Vela, R. Varela and M. A. González, Local search and genetic algorithm for the job shop scheduling problem with sequence dependent setup times, Journal of Heuristics, 16 (2010), 139-165.  doi: 10.1007/s10732-008-9094-y. [26] L. Wang, Combining facility layout redesign and dynamic routing for job-shop assembly operations, 2011 IEEE International Symposium on Assembly and Manufacturing, Tampere, Finland, (2011). doi: 10.1109/ISAM.2011.5942302. [27] L. Wang, S. Keshavarzmanesh and H. Y. Feng, A hybrid approach for dynamic assembly shop floor layout, 2010 IEEE International Conference on Automation Science and Engineering, Toronto, ON, Canada, (2010). doi: 10.1109/COASE.2010.5584219. [28] L. Wang, H. Wu, F. Tang and D. Z. Zheng, A hybrid quantum-inspired genetic algorithm for flow shop scheduling, International Conference on Intelligent Computing, Berlin, Heidelberg, (2005), 636–644. doi: 10.1007/11538356_66. [29] C. L. Yang, S. P. Chuang and T. S. Hsu, A genetic algorithm for dynamic facility planning in job shop manufacturing, The International Journal of Advanced Manufacturing Technology, 52 (2011), 303-309.  doi: 10.1007/s00170-010-2733-0.
Two possible cases that could happen to determine the start time of a job
An illustrative example of a solution with 12 departments and 20 jobs
The candidate locations and departments arrangements for an example with 12 departments
An illustrative example of the calculation of PUS
The possible movements, and rotations in the local search for layout
The flowchart of the second phase of the hybrid algorithm (local search algorithms)
Illustrative examples of the violation of departments
Illustration of the solution found for the discrete facility layout of Instance 15
Illustration of the solution found for the continuous facility layout of Instance 15
Illustration of the solution found for the scheduling of Instance 15 at period 1 (Phase 1)
Illustration of the solution found for the scheduling of Instance 15 at period 1 (Phase 2)
The distribution and the interval estimation of the assessment metrics for separate optimization and simultaneous optimization
The features and objectives studied in the literature
 Problem Rows Features Rows Objectives FLP [F1] Inequality of departments [O1] Material handling cost [F2] Input and output for departments [O2] Rearrangement cost of departments [F3] Multiple periods [O3] Desirability of closeness rating scores [F4] Continuous Optimization [O4] PUS [O5] Work in process JSS [F5] Setup time [O6] Makespan [F6] Transportation delay time [O7] Mean Flow Time (MFT) [F7] Multiple periods [O8] Earliness [F8] Due date of jobs [O9] Lateness [F9] Machine breakdown
 Problem Rows Features Rows Objectives FLP [F1] Inequality of departments [O1] Material handling cost [F2] Input and output for departments [O2] Rearrangement cost of departments [F3] Multiple periods [O3] Desirability of closeness rating scores [F4] Continuous Optimization [O4] PUS [O5] Work in process JSS [F5] Setup time [O6] Makespan [F6] Transportation delay time [O7] Mean Flow Time (MFT) [F7] Multiple periods [O8] Earliness [F8] Due date of jobs [O9] Lateness [F9] Machine breakdown
A summary of the features for a number of studies published recently
Specifications of randomly generated instances
 Size of Instance No. of No. of No. of instances (No. of periods) departments machines jobs Small 1 (2), 11 (3) 3 3 3 2 (2), 12 (3) 4 5 5 3 (2), 13 (3) 5 7 7 Medium 4 (2), 14 (3) 6 9 9 5 (2), 15 (3) 8 11 11 6 (2), 16 (3) 10 13 13 Large-scale 7 (2), 17 (3) 12 16 16 8 (2), 18 (3) 14 19 19 9 (2), 19 (3) 16 21 21 10 (2), 20 (3) 18 23 23
 Size of Instance No. of No. of No. of instances (No. of periods) departments machines jobs Small 1 (2), 11 (3) 3 3 3 2 (2), 12 (3) 4 5 5 3 (2), 13 (3) 5 7 7 Medium 4 (2), 14 (3) 6 9 9 5 (2), 15 (3) 8 11 11 6 (2), 16 (3) 10 13 13 Large-scale 7 (2), 17 (3) 12 16 16 8 (2), 18 (3) 14 19 19 9 (2), 19 (3) 16 21 21 10 (2), 20 (3) 18 23 23
The demand for products over different periods ([7])
 1 (*10) 2 (*10) 3 (*10) 1 T(250,280,300) T(40, 50, 60) T(40, 50, 60) 2 T(70, 75, 90) T(350,400,430) T(110,125,135) 3 N(5, 56) N(2, 55) N(20,550) 4 N(4, 40) N(4, 50) N(4, 70)
 1 (*10) 2 (*10) 3 (*10) 1 T(250,280,300) T(40, 50, 60) T(40, 50, 60) 2 T(70, 75, 90) T(350,400,430) T(110,125,135) 3 N(5, 56) N(2, 55) N(20,550) 4 N(4, 40) N(4, 50) N(4, 70)
The levels of parameters defined for experiments
 Parameter Level of parameters Small size Medium size Large-scale I II III I II III I II III Iteration 60 80 100 80 100 120 100 150 200 Initial population 10 20 30 30 40 50 80 100 120 $C_p$ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 $M_p$ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
 Parameter Level of parameters Small size Medium size Large-scale I II III I II III I II III Iteration 60 80 100 80 100 120 100 150 200 Initial population 10 20 30 30 40 50 80 100 120 $C_p$ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 $M_p$ 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
The optimal setting for the parameters of NSGA-II
 Parameter Size of instances Small Medium Large-scale Iteration 60 100 150 Initial population 20 30 100 $C_p$ 0.7 0.7 0.8 $M_p$ 0.2 0.3 0.3
 Parameter Size of instances Small Medium Large-scale Iteration 60 100 150 Initial population 20 30 100 $C_p$ 0.7 0.7 0.8 $M_p$ 0.2 0.3 0.3
The comparison of the traditional and proposed method of the PUS
 4 7 10 13 16 19 Traditional method $(\%)$ 35.2 48.8 57.3 34 55.6 51.6 Proposed method $(\%)$ 38.9 41.1 49.8 35.3 42 37.6 Gap $(\%)$ -10.6 15.9 13.1 -3.8 24.3 27
 4 7 10 13 16 19 Traditional method $(\%)$ 35.2 48.8 57.3 34 55.6 51.6 Proposed method $(\%)$ 38.9 41.1 49.8 35.3 42 37.6 Gap $(\%)$ -10.6 15.9 13.1 -3.8 24.3 27
Pareto solutions found by the Baron solver and the hybrid algorithm for Instance 1
 Row Baron solver Hybrid algorithm Obj. 1 Obj. 2 Obj. 3 (%) Obj. 4 Obj. 1 Obj. 2 Obj. 3 (%) Obj. 4 1 596,320.6 0.2777 0.68 23.3751 223,500 0.58 24.9 22.851 2 441,669.9 0 3.33 22.1017 224,616.6 0.57 24.7 22.798 3 482,948.3 0.2148 1.70 22.2769 236,688.6 0.555 24.2 22.764 4 227,695.7 0.2838 20.44 21.5836 249,431.5 0.54 23.1 22.693 5 269,847.4 0.2532 20.93 21.3166 223,500 0.6 25.7 21.854 6 227,756.6 0.28528 20.44 21.5832 375,100 0.3 25.3 22.903 7 351,791.2 0.40051 9.68 21.9565 223,500 0.6 20.3 22.379 8 268,928.5 0.25386 20.76 21.3141 375,100 0.45 20.6 22.903 9 228,763.6 0.2868 20.45 21.5826 300,388.8 0.494 20.6 21.854 10 228,571.3 0.2871 20.38 21.5841 379,873.8 0 20.6 21.64 11 360,249.7 0.1717 40.14 22.5674 223,500 0.786 20 21.645
 Row Baron solver Hybrid algorithm Obj. 1 Obj. 2 Obj. 3 (%) Obj. 4 Obj. 1 Obj. 2 Obj. 3 (%) Obj. 4 1 596,320.6 0.2777 0.68 23.3751 223,500 0.58 24.9 22.851 2 441,669.9 0 3.33 22.1017 224,616.6 0.57 24.7 22.798 3 482,948.3 0.2148 1.70 22.2769 236,688.6 0.555 24.2 22.764 4 227,695.7 0.2838 20.44 21.5836 249,431.5 0.54 23.1 22.693 5 269,847.4 0.2532 20.93 21.3166 223,500 0.6 25.7 21.854 6 227,756.6 0.28528 20.44 21.5832 375,100 0.3 25.3 22.903 7 351,791.2 0.40051 9.68 21.9565 223,500 0.6 20.3 22.379 8 268,928.5 0.25386 20.76 21.3141 375,100 0.45 20.6 22.903 9 228,763.6 0.2868 20.45 21.5826 300,388.8 0.494 20.6 21.854 10 228,571.3 0.2871 20.38 21.5841 379,873.8 0 20.6 21.64 11 360,249.7 0.1717 40.14 22.5674 223,500 0.786 20 21.645
The comparison of the solutions' quality for both the separate optimization and simultaneous optimization
 Instance QM MID DM SM Sep. Sim. $\bar{d}_1$ Sep. Sim. $\bar{d}_2$ Sep. Sim. $\bar{d}_3$ Sep. Sim. $\bar{d}_4$ 1 0.600 1 0.400 0.975 0.781 0.194 1.310 1.933 0.623 0.655 1.151 -0.496 2 0.600 1 0.400 1.010 0.586 0.424 1.906 0.739 -1.167 1.454 1.730 -0.276 3 0.500 0.750 0.250 0.994 1.269 -0.275 1.213 1.967 0.754 0.464 0.548 -0.084 4 0.555 0.888 0.333 1.241 1.141 0.100 1.337 1.479 0.142 0.610 0.861 -0.251 5 0.500 1 0.500 1.902 1.432 0.470 1.666 1.479 -0.187 1.037 1.524 -0.487 6 0.428 0.714 0.286 1.342 1.286 0.056 1.555 1.294 -0.261 0.504 0.677 -0.173 7 0.875 0.375 -0.500 1.107 1.287 -0.180 1.576 1.461 -0.115 0.415 0.985 -0.570 8 0.500 1 0.500 0.893 0.624 0.269 1.324 1.636 0.312 0.602 0.854 -0.252 9 0.600 1 0.400 1.365 1.017 0.348 1.521 1.241 -0.280 0.439 0.950 -0.511 10 0.555 0.875 0.320 1.698 1.205 0.493 1.722 1.625 -0.097 0.520 0.991 -0.471 11 0.666 1 0.334 1.031 0.743 0.288 0.883 1.397 0.514 0.999 1.986 -0.987 12 1 1 0 0.863 1.041 -0.178 1.068 0.883 -0.185 0.080 1.278 -1.198 13 0.500 1 0.500 2.631 2.115 0.516 1.536 1.625 0.089 0.268 0.790 -0.522 14 0.666 1 0.334 1.656 1.328 0.328 1.658 1.031 -0.627 0.771 0.790 -0.019 15 0.666 0.666 0 1.246 1.101 0.145 1.521 1.677 0.156 0.950 0.721 0.229 16 0.666 0.500 -0.166 1.462 1.482 -0.020 1.409 1.324 -0.085 0.537 0.746 -0.209 17 0.666 0.666 0 0.877 1.077 -0.200 1.624 1.359 -0.265 0.357 0.472 -0.115 18 0.500 0.777 0.277 0.645 0.639 0.006 1.446 1.365 -0.081 0.698 0.685 0.013 19 0.833 1 0.167 1.791 1.450 0.341 1.552 1.701 0.149 0.578 0.773 -0.195 20 0.666 0.888 0.222 1.308 0.812 0.496 1.291 1.105 -0.186 0.661 0.808 -0.147 Average 0.626 0.854 0.227 1.301 1.120 0.181 1.455 1.415 -0.039 0.629 0.960 -0.336 Gap (%) 36.42 13.91 -2.74 -52.62 Sep: Separate Optimization and Sim: Simultaneous Optimization
 Instance QM MID DM SM Sep. Sim. $\bar{d}_1$ Sep. Sim. $\bar{d}_2$ Sep. Sim. $\bar{d}_3$ Sep. Sim. $\bar{d}_4$ 1 0.600 1 0.400 0.975 0.781 0.194 1.310 1.933 0.623 0.655 1.151 -0.496 2 0.600 1 0.400 1.010 0.586 0.424 1.906 0.739 -1.167 1.454 1.730 -0.276 3 0.500 0.750 0.250 0.994 1.269 -0.275 1.213 1.967 0.754 0.464 0.548 -0.084 4 0.555 0.888 0.333 1.241 1.141 0.100 1.337 1.479 0.142 0.610 0.861 -0.251 5 0.500 1 0.500 1.902 1.432 0.470 1.666 1.479 -0.187 1.037 1.524 -0.487 6 0.428 0.714 0.286 1.342 1.286 0.056 1.555 1.294 -0.261 0.504 0.677 -0.173 7 0.875 0.375 -0.500 1.107 1.287 -0.180 1.576 1.461 -0.115 0.415 0.985 -0.570 8 0.500 1 0.500 0.893 0.624 0.269 1.324 1.636 0.312 0.602 0.854 -0.252 9 0.600 1 0.400 1.365 1.017 0.348 1.521 1.241 -0.280 0.439 0.950 -0.511 10 0.555 0.875 0.320 1.698 1.205 0.493 1.722 1.625 -0.097 0.520 0.991 -0.471 11 0.666 1 0.334 1.031 0.743 0.288 0.883 1.397 0.514 0.999 1.986 -0.987 12 1 1 0 0.863 1.041 -0.178 1.068 0.883 -0.185 0.080 1.278 -1.198 13 0.500 1 0.500 2.631 2.115 0.516 1.536 1.625 0.089 0.268 0.790 -0.522 14 0.666 1 0.334 1.656 1.328 0.328 1.658 1.031 -0.627 0.771 0.790 -0.019 15 0.666 0.666 0 1.246 1.101 0.145 1.521 1.677 0.156 0.950 0.721 0.229 16 0.666 0.500 -0.166 1.462 1.482 -0.020 1.409 1.324 -0.085 0.537 0.746 -0.209 17 0.666 0.666 0 0.877 1.077 -0.200 1.624 1.359 -0.265 0.357 0.472 -0.115 18 0.500 0.777 0.277 0.645 0.639 0.006 1.446 1.365 -0.081 0.698 0.685 0.013 19 0.833 1 0.167 1.791 1.450 0.341 1.552 1.701 0.149 0.578 0.773 -0.195 20 0.666 0.888 0.222 1.308 0.812 0.496 1.291 1.105 -0.186 0.661 0.808 -0.147 Average 0.626 0.854 0.227 1.301 1.120 0.181 1.455 1.415 -0.039 0.629 0.960 -0.336 Gap (%) 36.42 13.91 -2.74 -52.62 Sep: Separate Optimization and Sim: Simultaneous Optimization
The comparison of the average unit of the MFT for both the separate optimization and simultaneous optimization
 1 2 3 4 5 6 7 8 9 10 Separate 23.2 42.2 80.1 94.7 124 185 238.3 253.8 295.7 317.6 Simultaneous 22.3 40.6 74.2 90.3 118.9 161.8 211.1 212.7 250.1 265.6 Gap (%) 3.7 3.9 7.4 4.6 4.1 12.5 11.4 16.2 15.4 16.4 11 12 13 14 15 16 17 18 19 20 Separate 23.1 42.3 73 94.6 126.6 197.4 245.6 266.4 299.9 324.5 Simultaneous 21.8 41 70.6 70.6 118.8 163.6 212.9 223.7 254.7 285.6 Gap (%) 5.5 3.1 3.3 25.4 6.1 17.1 13.3 16 15 11.98
 1 2 3 4 5 6 7 8 9 10 Separate 23.2 42.2 80.1 94.7 124 185 238.3 253.8 295.7 317.6 Simultaneous 22.3 40.6 74.2 90.3 118.9 161.8 211.1 212.7 250.1 265.6 Gap (%) 3.7 3.9 7.4 4.6 4.1 12.5 11.4 16.2 15.4 16.4 11 12 13 14 15 16 17 18 19 20 Separate 23.1 42.3 73 94.6 126.6 197.4 245.6 266.4 299.9 324.5 Simultaneous 21.8 41 70.6 70.6 118.8 163.6 212.9 223.7 254.7 285.6 Gap (%) 5.5 3.1 3.3 25.4 6.1 17.1 13.3 16 15 11.98
 [1] Y. K. Lin, C. S. Chong. A tabu search algorithm to minimize total weighted tardiness for the job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (2) : 703-717. doi: 10.3934/jimo.2016.12.703 [2] Jian Xiong, Zhongbao Zhou, Ke Tian, Tianjun Liao, Jianmai Shi. A multi-objective approach for weapon selection and planning problems in dynamic environments. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1189-1211. doi: 10.3934/jimo.2016068 [3] Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial and Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122 [4] Didem Cinar, José António Oliveira, Y. Ilker Topcu, Panos M. Pardalos. A priority-based genetic algorithm for a flexible job shop scheduling problem. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1391-1415. doi: 10.3934/jimo.2016.12.1391 [5] Ya Liu, Zhaojin Li. Dynamic-programming-based heuristic for multi-objective operating theater planning. Journal of Industrial and Management Optimization, 2022, 18 (1) : 111-135. doi: 10.3934/jimo.2020145 [6] Xiliang Sun, Wanjie Hu, Xiaolong Xue, Jianjun Dong. Multi-objective optimization model for planning metro-based underground logistics system network: Nanjing case study. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021179 [7] Adel Dabah, Ahcene Bendjoudi, Abdelhakim AitZai. An efficient Tabu Search neighborhood based on reconstruction strategy to solve the blocking job shop scheduling problem. Journal of Industrial and Management Optimization, 2017, 13 (4) : 2015-2031. doi: 10.3934/jimo.2017029 [8] Min Zhang, Gang Li. Multi-objective optimization algorithm based on improved particle swarm in cloud computing environment. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1413-1426. doi: 10.3934/dcdss.2019097 [9] Xuewen Huang, Xiaotong Zhang, Sardar M. N. Islam, Carlos A. Vega-Mejía. An enhanced Genetic Algorithm with an innovative encoding strategy for flexible job-shop scheduling with operation and processing flexibility. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2943-2969. doi: 10.3934/jimo.2019088 [10] Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022001 [11] Yuan-mei Xia, Xin-min Yang, Ke-quan Zhao. A combined scalarization method for multi-objective optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2669-2683. doi: 10.3934/jimo.2020088 [12] Tien-Fu Liang, Hung-Wen Cheng. Multi-objective aggregate production planning decisions using two-phase fuzzy goal programming method. Journal of Industrial and Management Optimization, 2011, 7 (2) : 365-383. doi: 10.3934/jimo.2011.7.365 [13] Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial and Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595 [14] Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $k$-facility location problem with linear penalties. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2013-2030. doi: 10.3934/jimo.2020056 [15] Shungen Luo, Xiuping Guo. Multi-objective optimization of multi-microgrid power dispatch under uncertainties using interval optimization. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021208 [16] Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095 [17] Masoud Rabbani, Nastaran Oladzad-Abbasabady, Niloofar Akbarian-Saravi. Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1035-1062. doi: 10.3934/jimo.2021007 [18] Han Yang, Jia Yue, Nan-jing Huang. Multi-objective robust cross-market mixed portfolio optimization under hierarchical risk integration. Journal of Industrial and Management Optimization, 2020, 16 (2) : 759-775. doi: 10.3934/jimo.2018177 [19] Qiang Long, Xue Wu, Changzhi Wu. Non-dominated sorting methods for multi-objective optimization: Review and numerical comparison. Journal of Industrial and Management Optimization, 2021, 17 (2) : 1001-1023. doi: 10.3934/jimo.2020009 [20] Liwei Zhang, Jihong Zhang, Yule Zhang. Second-order optimality conditions for cone constrained multi-objective optimization. Journal of Industrial and Management Optimization, 2018, 14 (3) : 1041-1054. doi: 10.3934/jimo.2017089

2021 Impact Factor: 1.411