
-
Previous Article
Impact of risk aversion on two-echelon supply chain systems with carbon emission reduction constraints
- JIMO Home
- This Issue
-
Next Article
Sparse signal reconstruction via the approximations of $ \ell_{0} $ quasinorm
An application of crypto cloud computing in social networks by cooperative game theory
1. | Department of Electrical and Electronic Engineering, Isparta University of Applied Sciences, Isparta, Turkey |
2. | Department of Mathematics, Süleyman Demirel University, Isparta, Turkey, Institute of Applied Mathematics, METU, Ankara, Turkey |
3. | Faculty of Engineering Management, Chair of Marketing and Economic Engineering, Poznan University of Technology, Poznan, Poland, Institute of Applied Mathematics, METU, Ankara, Turkey |
In this paper, we mathematically associate Crypto Cloud Computing, that has become an emerging research area, with Cooperative Game Theory in the presence of uncertainty. In the sequel, we retrieve data from the database of Amazon Web Service. The joint view upon Crypto Cloud Computing, Cooperative Game Theory and Uncertainty management is a novel approach. For this purpose, we construct a cooperative interval game model and apply this model to Social Networks. Then, we suggest some interval solutions related with the model by proposing a novel elliptic curve public key encryption scheme over finite fields having the property of semantic security. The paper ends with concluding words and an outlook to future studies.
References:
[1] |
S. P. Ahuja and B. Moore,
A Survey of Cloud Computing and Social Networks, Network and Communication Technologies, 2 (2013), 11-16.
doi: 10.5539/nct.v2n2p11. |
[2] |
S. Z. Alparslan Gök, R. Branzei and S. Tijs,
The interval Shapley value: an axiomatization, Central European Journal of Operations Research, 18 (2010), 131-140.
doi: 10.1007/s10100-009-0096-0. |
[3] |
S. Z. Alparslan Gök, R. Branzei and S. Tijs, Convex interval games, Journal of Applied Mathematics and Decision Sciences, 2009 (2009), Article ID 342089, 14 pages.
doi: 10.1155/2009/342089. |
[4] |
S. Z. Alparslan Gök, O. Palancıand and M. O. Olgun,
Cooperative interval games: Mountain situations with interval data, Journal of Computational and Applied Mathematics, 259 (2014), 622-632.
doi: 10.1016/j.cam.2013.01.021. |
[5] |
S. Z. Alparslan Gök and G.-W. Weber,
On dominance core and stable sets for cooperative ellipsoidal games, Optimization, 62 (2013), 1297-1308.
doi: 10.1080/02331934.2013.793327. |
[6] |
Amazon Web Services, Available from: http://calculator.s3.amazonaws.com/index.html. Google Scholar |
[7] |
M. Ashraf and B. B. Kırlar,
Message transmission for GH- public key cryptosystem, Journal of Computational and Applied Mathematics, 259 (2014), 578-585.
doi: 10.1016/j.cam.2013.10.005. |
[8] |
M. Ashraf and B. B. Kırlar, On the Alternate Models of Elliptic Curves, International Journal of Information Security Science, 1 (2012), 49-66. Google Scholar |
[9] |
D. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters, Twisted Edwards curves, Progress in Cryptology - Africacrypt 2008, Lecture Notes in Computer Science, 5023 (2008), Springer, 389–405.
doi: 10.1007/978-3-540-68164-9_26. |
[10] |
D. Bernstein, C. Chuengsatiansup, D. Kohel and T. Lange, Twisted Hessian curves, Progress in Cryptology—LATINCRYPT 2015, 269–294, Lecture Notes in Comput. Sci., 9230, Springer, Cham, 2015. Available from https://eprint.iacr.org/2015/781.pdf.
doi: 10.1007/978-3-319-22174-8_15. |
[11] |
D. Bernstein and T. Lange, Explicit Formulas Database, Available from http://www.hyperelliptic.org/EFD. Google Scholar |
[12] |
D. Bernstein and T. Lange, Faster addition and doubling on elliptic curves, Progress in Cryptology - Asiacrypt 2007, Lecture Notes in Computer Science, 4833 (2007), Springer, 29–50.
doi: 10.1007/978-3-540-76900-2_3. |
[13] |
D. Bernstein, T. Lange and R. R. Farashahi, Binary Edwards Curves, Cryptographic Hardware and Embedded Systems - CHES 2008, Lecture Notes in Computer Science, 5154 (2008), Springer, 244–265.
doi: 10.1007/978-3-540-85053-3_16. |
[14] |
O. Billet and M. Joye, The Jacobi model of an elliptic curve and side-channel analysis, AAECC 2003, Lecture Notes in Computer Science, 2643 (2003), Springer-Verlag, 34–42.
doi: 10.1007/3-540-44828-4_5. |
[15] |
C. G. Bird,
On cost allocation for a spanning tree: A game theoretic approach, Networks, 6 (1976), 335-350.
doi: 10.1002/net.3230060404. |
[16] |
P. Borm, H. Hamers and R. Hendrickx,
Operations research games: A survey, TOP, 9 (2001), 139-216.
doi: 10.1007/BF02579075. |
[17] |
R. Branzei, S. Tijs and S. Z. Alparslan Gök,
How to handle interval solutions for cooperative interval games, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18 (2010), 123-132.
doi: 10.1142/S0218488510006441. |
[18] |
R. Branzei, S. Z. Alparslan Gök and O. Branzei,
Cooperative games under interval uncertainty: on the convexity of the interval undominated cores, Central European Journal of Operations Research, 19 (2011), 523-532.
doi: 10.1007/s10100-010-0141-z. |
[19] |
K. Chard, S. Caton, O. Rana and K. Bubendorfer, Social cloud: Cloud computing in social networks, IEEE 3rd International Conference on Cloud Computing, (2010), 99–106.
doi: 10.1109/CLOUD.2010.28. |
[20] |
A. A. Ciss and D. Sow, On a New Generalization of Huff Curves, 2011. Available from http://eprint.iacr.org/2011/580.pdf. Google Scholar |
[21] |
A. Claus and D. J. Kleitman,
Cost allocation for a spanning tree, Networks, 3 (1973), 289-304.
doi: 10.1002/net.3230030402. |
[22] |
J. Devigne and M. Joye, Binary Huff Curves, Topics in Cryptology - CT-RSA 2011, Lecture Notes in Computer Science, 6558 (2011), Springer, 340–355.
doi: 10.1007/978-3-642-19074-2_22. |
[23] |
H. Edwards,
A normal form for elliptic curves, Bulletin of the American Mathematical Society, 44 (2007), 393-422.
doi: 10.1090/S0273-0979-07-01153-6. |
[24] |
J. R. Evans and E. Minieka, Optimization Algorithms for Networks and Graphs, CRC Press,
1992. |
[25] |
K. A. Falahi, Y. Atif and S. Elnaffar, Social networks: Challenges and new opportunities, In Proceedings of the 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing, (2010), 804–808.
doi: 10.1109/GreenCom-CPSCom.2010.14. |
[26] |
R. R. Farashahi and M. Joye, Efficient Arithmetic on Hessian Curves, Public Key Cryptography - PKC 2010, Lecture Notes in Computer Science, 6056 (2010), Springer, 243–260.
doi: 10.1007/978-3-642-13013-7_15. |
[27] |
R. Feng, M. Nie and H. Wu, Twisted jacobi intersections curves, Theory and Applications of Models of Computation, 2010,199–210, Available from http://eprint.iacr.org/2009/597.pdf.
doi: 10.1007/978-3-642-13562-0_19. |
[28] |
D. Granot,
Cooperative games in stochastic characteristic function form, Management Science, 23 (1977), 621-630.
doi: 10.1287/mnsc.23.6.621. |
[29] |
T. S. Gustavsen and K. Ranestad,
A simple point counting algorithm for hessian elliptic curves in characteristic three, Appl. Algebra Eng. Commun. Comput., 17 (2006), 141-150.
doi: 10.1007/s00200-006-0013-x. |
[30] |
D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.
doi: 10.1016/s0012-365x(04)00102-5. |
[31] |
H. Hisil, K. Koon-Ho Wong, G. Carter and E. Dawson, Twisted Edwards Curves Revisited, Advances in Cryptology - Asiacrypt 2008, Lecture Notes in Computer Science, 5350 (2008), Springer-Verlag, 326–343.
doi: 10.1007/978-3-540-89255-7_20. |
[32] |
H. Hisil, K. Koon-Ho Wong, G. Carter and E. Dawson, Jacobi quartic curves revisited, ACISP, 2009,452–468.
doi: 10.1007/978-3-642-02620-1_31. |
[33] |
G. Huff,
Diophantine problems in geometry and elliptic ternary forms, Duke Math. J., 15 (1948), 443-453.
doi: 10.1215/S0012-7094-48-01543-9. |
[34] |
M. Joye and J. Quisquater, Hessian elliptic curves and sidechannel attacks, Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science, 2162 (2001), Springer, 402–410.
doi: 10.1007/3-540-44709-1_33. |
[35] |
M. Joye, M. Tibbouchi and D. Vergnaud, Huff's Model for Elliptic Curves, Algorithmic Number Theory - ANTS-IX, Lecture Notes in Computer Science, 6197 (2010), Springer, 234–250.
doi: 10.1007/978-3-642-14518-6_20. |
[36] |
E. Kilic, A. Karimov and G.-W. Weber, Applications of stochastic hybrid systems in portfolio optimization, In: Thomaidis N, DashGHJr, editors. Recent Advances in Computational Finance. (NY): Nova Science. Google Scholar |
[37] |
B. B. Kırlar and M. Çil,
On the k-th order LFSR sequence with public key cryptosystems, Mathematica Slovaca, 67 (2017), 601-610.
doi: 10.1515/ms-2016-0294. |
[38] |
B. B. Kırlar, S. Ergün, S. Z. Alparslan Gök and G.-W. Weber,
A game-theoretical and cryptographical approach to crypto-cloud computing and its economical and financial aspects, Annals of Operations Research, 260 (2018), 217-231.
doi: 10.1007/s10479-016-2139-y. |
[39] |
N. Koblitz,
Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987), 203-209.
doi: 10.1090/S0025-5718-1987-0866109-5. |
[40] |
N. Koblitz, A. Menezes and S. Vanstone,
The State of Elliptic Curve Cryptography, Designs, Codes and Cryptography, 19 (2000), 173-193.
doi: 10.1023/A:1008354106356. |
[41] |
E. Kropat, G.-W. Weber and J.-J. Rückmann.,
Regression analysis for clusters in gene environment networks based on ellipsoidal calculus and optimization., Dyn. Cont. Dis. Impulsive Syst. Ser. B., 17 (2010), 639-657.
|
[42] |
P. Liardet and N. Smart, Preventing SPA/DPA in ECC systems using the Jacobi form, Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science, 2162 (2001), Springer-Verlag, 391–401.
doi: 10.1007/3-540-44709-1_32. |
[43] |
P. Maillé, P. Reichl and B. Tuffin, Of threats and costs: A game-theoretic approach to security risk management, In: Performance Models and Risk Management in Communications Systems, 46 (2011), Springer, New York, 33–53.
doi: 10.1007/978-1-4419-0534-5_2. |
[44] |
M. Mares, Fuzzy Cooperative Games: Cooperation with Vague Expectations, Physica Verlag, Heidelberg, 2001.
doi: 10.1007/978-3-7908-1820-8. |
[45] |
V. Miller,
Use of elliptic curves in cryptography, Advances in Cryptology – CRYPTO –85, Lecture Notes in Computer Science, 218 (1986), 417-426.
doi: 10.1007/3-540-39799-X_31. |
[46] |
S. Moretti, S. Z. Alparslan Gök, R. Branzei and S. Tijs,
Connection situations under uncertainty and cost monotonic solutions, Computers & Operations Research, 38 (2011), 1638-1645.
doi: 10.1016/j.cor.2011.02.004. |
[47] |
A. Muratovic-Ribic and Q. Wang, Partitions and Compositions over Finite Fields, The Electronic Journal of Combinatorics, 20 (2013), Paper 34, 14 pp. |
[48] |
N. G. Orhon and H. Hisil,
Speeding up Huff Form of Elliptic Curves, Designs, Codes and Cryptography, 86 (2018), 2807-2823.
doi: 10.1007/s10623-018-0475-4. |
[49] |
O. Palancı, S. Z. Alparslan Gök, S. Ergün and G.-W. Weber,
Cooperative grey games and the grey Shapley value, Optimization, 64 (2015), 1657-1668.
doi: 10.1080/02331934.2014.956743. |
[50] |
L. S. Shapley,
A value for n-person games, Annals of Mathematics Studies, 28 (1953), 307-317.
|
[51] |
J. Silverman, The Arithmetic of Elliptic Curves, Springer, Berlin, 1986.
doi: 10.1007/978-1-4757-1920-8. |
[52] |
N. Smart and E. J. Westwood,
Point multiplication on ordinary elliptic curves over fields of characteristic three, Appl. Algebra Eng. Commun. Comput., 13 (2003), 485-497.
doi: 10.1007/s00200-002-0114-0. |
[53] |
J. Suijs, P. Borm, A. De Waegenaere and S. Tijs,
Cooperative games with stochastic payoffs, European Journal of Operational Research, 113 (1999), 193-205.
doi: 10.1016/S0377-2217(97)00421-9. |
[54] |
D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996. |
[55] |
H. Wu and R. Feng, Elliptic curves in Huff's model, Wuhan University Journal of Natural Sciences, 17 (2012), 473–480. Available from http://eprint.iacr.org/2010/390.pdf.
doi: 10.1007/s11859-012-0873-9. |
show all references
References:
[1] |
S. P. Ahuja and B. Moore,
A Survey of Cloud Computing and Social Networks, Network and Communication Technologies, 2 (2013), 11-16.
doi: 10.5539/nct.v2n2p11. |
[2] |
S. Z. Alparslan Gök, R. Branzei and S. Tijs,
The interval Shapley value: an axiomatization, Central European Journal of Operations Research, 18 (2010), 131-140.
doi: 10.1007/s10100-009-0096-0. |
[3] |
S. Z. Alparslan Gök, R. Branzei and S. Tijs, Convex interval games, Journal of Applied Mathematics and Decision Sciences, 2009 (2009), Article ID 342089, 14 pages.
doi: 10.1155/2009/342089. |
[4] |
S. Z. Alparslan Gök, O. Palancıand and M. O. Olgun,
Cooperative interval games: Mountain situations with interval data, Journal of Computational and Applied Mathematics, 259 (2014), 622-632.
doi: 10.1016/j.cam.2013.01.021. |
[5] |
S. Z. Alparslan Gök and G.-W. Weber,
On dominance core and stable sets for cooperative ellipsoidal games, Optimization, 62 (2013), 1297-1308.
doi: 10.1080/02331934.2013.793327. |
[6] |
Amazon Web Services, Available from: http://calculator.s3.amazonaws.com/index.html. Google Scholar |
[7] |
M. Ashraf and B. B. Kırlar,
Message transmission for GH- public key cryptosystem, Journal of Computational and Applied Mathematics, 259 (2014), 578-585.
doi: 10.1016/j.cam.2013.10.005. |
[8] |
M. Ashraf and B. B. Kırlar, On the Alternate Models of Elliptic Curves, International Journal of Information Security Science, 1 (2012), 49-66. Google Scholar |
[9] |
D. Bernstein, P. Birkner, M. Joye, T. Lange and C. Peters, Twisted Edwards curves, Progress in Cryptology - Africacrypt 2008, Lecture Notes in Computer Science, 5023 (2008), Springer, 389–405.
doi: 10.1007/978-3-540-68164-9_26. |
[10] |
D. Bernstein, C. Chuengsatiansup, D. Kohel and T. Lange, Twisted Hessian curves, Progress in Cryptology—LATINCRYPT 2015, 269–294, Lecture Notes in Comput. Sci., 9230, Springer, Cham, 2015. Available from https://eprint.iacr.org/2015/781.pdf.
doi: 10.1007/978-3-319-22174-8_15. |
[11] |
D. Bernstein and T. Lange, Explicit Formulas Database, Available from http://www.hyperelliptic.org/EFD. Google Scholar |
[12] |
D. Bernstein and T. Lange, Faster addition and doubling on elliptic curves, Progress in Cryptology - Asiacrypt 2007, Lecture Notes in Computer Science, 4833 (2007), Springer, 29–50.
doi: 10.1007/978-3-540-76900-2_3. |
[13] |
D. Bernstein, T. Lange and R. R. Farashahi, Binary Edwards Curves, Cryptographic Hardware and Embedded Systems - CHES 2008, Lecture Notes in Computer Science, 5154 (2008), Springer, 244–265.
doi: 10.1007/978-3-540-85053-3_16. |
[14] |
O. Billet and M. Joye, The Jacobi model of an elliptic curve and side-channel analysis, AAECC 2003, Lecture Notes in Computer Science, 2643 (2003), Springer-Verlag, 34–42.
doi: 10.1007/3-540-44828-4_5. |
[15] |
C. G. Bird,
On cost allocation for a spanning tree: A game theoretic approach, Networks, 6 (1976), 335-350.
doi: 10.1002/net.3230060404. |
[16] |
P. Borm, H. Hamers and R. Hendrickx,
Operations research games: A survey, TOP, 9 (2001), 139-216.
doi: 10.1007/BF02579075. |
[17] |
R. Branzei, S. Tijs and S. Z. Alparslan Gök,
How to handle interval solutions for cooperative interval games, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18 (2010), 123-132.
doi: 10.1142/S0218488510006441. |
[18] |
R. Branzei, S. Z. Alparslan Gök and O. Branzei,
Cooperative games under interval uncertainty: on the convexity of the interval undominated cores, Central European Journal of Operations Research, 19 (2011), 523-532.
doi: 10.1007/s10100-010-0141-z. |
[19] |
K. Chard, S. Caton, O. Rana and K. Bubendorfer, Social cloud: Cloud computing in social networks, IEEE 3rd International Conference on Cloud Computing, (2010), 99–106.
doi: 10.1109/CLOUD.2010.28. |
[20] |
A. A. Ciss and D. Sow, On a New Generalization of Huff Curves, 2011. Available from http://eprint.iacr.org/2011/580.pdf. Google Scholar |
[21] |
A. Claus and D. J. Kleitman,
Cost allocation for a spanning tree, Networks, 3 (1973), 289-304.
doi: 10.1002/net.3230030402. |
[22] |
J. Devigne and M. Joye, Binary Huff Curves, Topics in Cryptology - CT-RSA 2011, Lecture Notes in Computer Science, 6558 (2011), Springer, 340–355.
doi: 10.1007/978-3-642-19074-2_22. |
[23] |
H. Edwards,
A normal form for elliptic curves, Bulletin of the American Mathematical Society, 44 (2007), 393-422.
doi: 10.1090/S0273-0979-07-01153-6. |
[24] |
J. R. Evans and E. Minieka, Optimization Algorithms for Networks and Graphs, CRC Press,
1992. |
[25] |
K. A. Falahi, Y. Atif and S. Elnaffar, Social networks: Challenges and new opportunities, In Proceedings of the 2010 IEEE/ACM Int'l Conference on Green Computing and Communications & Int'l Conference on Cyber, Physical and Social Computing, (2010), 804–808.
doi: 10.1109/GreenCom-CPSCom.2010.14. |
[26] |
R. R. Farashahi and M. Joye, Efficient Arithmetic on Hessian Curves, Public Key Cryptography - PKC 2010, Lecture Notes in Computer Science, 6056 (2010), Springer, 243–260.
doi: 10.1007/978-3-642-13013-7_15. |
[27] |
R. Feng, M. Nie and H. Wu, Twisted jacobi intersections curves, Theory and Applications of Models of Computation, 2010,199–210, Available from http://eprint.iacr.org/2009/597.pdf.
doi: 10.1007/978-3-642-13562-0_19. |
[28] |
D. Granot,
Cooperative games in stochastic characteristic function form, Management Science, 23 (1977), 621-630.
doi: 10.1287/mnsc.23.6.621. |
[29] |
T. S. Gustavsen and K. Ranestad,
A simple point counting algorithm for hessian elliptic curves in characteristic three, Appl. Algebra Eng. Commun. Comput., 17 (2006), 141-150.
doi: 10.1007/s00200-006-0013-x. |
[30] |
D. Hankerson, A. Menezes and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.
doi: 10.1016/s0012-365x(04)00102-5. |
[31] |
H. Hisil, K. Koon-Ho Wong, G. Carter and E. Dawson, Twisted Edwards Curves Revisited, Advances in Cryptology - Asiacrypt 2008, Lecture Notes in Computer Science, 5350 (2008), Springer-Verlag, 326–343.
doi: 10.1007/978-3-540-89255-7_20. |
[32] |
H. Hisil, K. Koon-Ho Wong, G. Carter and E. Dawson, Jacobi quartic curves revisited, ACISP, 2009,452–468.
doi: 10.1007/978-3-642-02620-1_31. |
[33] |
G. Huff,
Diophantine problems in geometry and elliptic ternary forms, Duke Math. J., 15 (1948), 443-453.
doi: 10.1215/S0012-7094-48-01543-9. |
[34] |
M. Joye and J. Quisquater, Hessian elliptic curves and sidechannel attacks, Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science, 2162 (2001), Springer, 402–410.
doi: 10.1007/3-540-44709-1_33. |
[35] |
M. Joye, M. Tibbouchi and D. Vergnaud, Huff's Model for Elliptic Curves, Algorithmic Number Theory - ANTS-IX, Lecture Notes in Computer Science, 6197 (2010), Springer, 234–250.
doi: 10.1007/978-3-642-14518-6_20. |
[36] |
E. Kilic, A. Karimov and G.-W. Weber, Applications of stochastic hybrid systems in portfolio optimization, In: Thomaidis N, DashGHJr, editors. Recent Advances in Computational Finance. (NY): Nova Science. Google Scholar |
[37] |
B. B. Kırlar and M. Çil,
On the k-th order LFSR sequence with public key cryptosystems, Mathematica Slovaca, 67 (2017), 601-610.
doi: 10.1515/ms-2016-0294. |
[38] |
B. B. Kırlar, S. Ergün, S. Z. Alparslan Gök and G.-W. Weber,
A game-theoretical and cryptographical approach to crypto-cloud computing and its economical and financial aspects, Annals of Operations Research, 260 (2018), 217-231.
doi: 10.1007/s10479-016-2139-y. |
[39] |
N. Koblitz,
Elliptic curve cryptosystems, Mathematics of Computation, 48 (1987), 203-209.
doi: 10.1090/S0025-5718-1987-0866109-5. |
[40] |
N. Koblitz, A. Menezes and S. Vanstone,
The State of Elliptic Curve Cryptography, Designs, Codes and Cryptography, 19 (2000), 173-193.
doi: 10.1023/A:1008354106356. |
[41] |
E. Kropat, G.-W. Weber and J.-J. Rückmann.,
Regression analysis for clusters in gene environment networks based on ellipsoidal calculus and optimization., Dyn. Cont. Dis. Impulsive Syst. Ser. B., 17 (2010), 639-657.
|
[42] |
P. Liardet and N. Smart, Preventing SPA/DPA in ECC systems using the Jacobi form, Cryptographic Hardware and Embedded Systems - CHES 2001, Lecture Notes in Computer Science, 2162 (2001), Springer-Verlag, 391–401.
doi: 10.1007/3-540-44709-1_32. |
[43] |
P. Maillé, P. Reichl and B. Tuffin, Of threats and costs: A game-theoretic approach to security risk management, In: Performance Models and Risk Management in Communications Systems, 46 (2011), Springer, New York, 33–53.
doi: 10.1007/978-1-4419-0534-5_2. |
[44] |
M. Mares, Fuzzy Cooperative Games: Cooperation with Vague Expectations, Physica Verlag, Heidelberg, 2001.
doi: 10.1007/978-3-7908-1820-8. |
[45] |
V. Miller,
Use of elliptic curves in cryptography, Advances in Cryptology – CRYPTO –85, Lecture Notes in Computer Science, 218 (1986), 417-426.
doi: 10.1007/3-540-39799-X_31. |
[46] |
S. Moretti, S. Z. Alparslan Gök, R. Branzei and S. Tijs,
Connection situations under uncertainty and cost monotonic solutions, Computers & Operations Research, 38 (2011), 1638-1645.
doi: 10.1016/j.cor.2011.02.004. |
[47] |
A. Muratovic-Ribic and Q. Wang, Partitions and Compositions over Finite Fields, The Electronic Journal of Combinatorics, 20 (2013), Paper 34, 14 pp. |
[48] |
N. G. Orhon and H. Hisil,
Speeding up Huff Form of Elliptic Curves, Designs, Codes and Cryptography, 86 (2018), 2807-2823.
doi: 10.1007/s10623-018-0475-4. |
[49] |
O. Palancı, S. Z. Alparslan Gök, S. Ergün and G.-W. Weber,
Cooperative grey games and the grey Shapley value, Optimization, 64 (2015), 1657-1668.
doi: 10.1080/02331934.2014.956743. |
[50] |
L. S. Shapley,
A value for n-person games, Annals of Mathematics Studies, 28 (1953), 307-317.
|
[51] |
J. Silverman, The Arithmetic of Elliptic Curves, Springer, Berlin, 1986.
doi: 10.1007/978-1-4757-1920-8. |
[52] |
N. Smart and E. J. Westwood,
Point multiplication on ordinary elliptic curves over fields of characteristic three, Appl. Algebra Eng. Commun. Comput., 13 (2003), 485-497.
doi: 10.1007/s00200-002-0114-0. |
[53] |
J. Suijs, P. Borm, A. De Waegenaere and S. Tijs,
Cooperative games with stochastic payoffs, European Journal of Operational Research, 113 (1999), 193-205.
doi: 10.1016/S0377-2217(97)00421-9. |
[54] |
D. B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996. |
[55] |
H. Wu and R. Feng, Elliptic curves in Huff's model, Wuhan University Journal of Natural Sciences, 17 (2012), 473–480. Available from http://eprint.iacr.org/2010/390.pdf.
doi: 10.1007/s11859-012-0873-9. |


Form of elliptic curves | Coordinates | Unified addition |
Weierstrass | Projective | 11M+5S+1D |
Edwards [23] | Projective | 10M+1S+1D |
Projective | 10M+1S+2D | |
Twisted Edwards [9,31] | Inverted | 9M+1S+2D |
Extended | 9M+2D | |
Jacobi Intersections [14] | Projective | 13M+2S+1D |
Twisted Jacobi Intersections [27] | Projective | 13M+2S+5D |
Extended Jacobi Quartics [32] | Jacobian | 10M+3S+1D |
Extended Projective | 8M+3S+2D | |
Hessian Curves [34] | Projective | 12M |
Generalized Hessian Curves [26] | Projective | 12M+1D |
Twisted Hessian Curves [10] | Projective | 11M |
Huff Curves [35] | Projective | 11M |
Generalized Huff Curves [55] | Projective | 11M+3D |
New Generalized Huff Curves [20] | Projective | 12M+4D |
Extended Huff Curves [48] | Projective | 10M |
Form of elliptic curves | Coordinates | Unified addition |
Weierstrass | Projective | 11M+5S+1D |
Edwards [23] | Projective | 10M+1S+1D |
Projective | 10M+1S+2D | |
Twisted Edwards [9,31] | Inverted | 9M+1S+2D |
Extended | 9M+2D | |
Jacobi Intersections [14] | Projective | 13M+2S+1D |
Twisted Jacobi Intersections [27] | Projective | 13M+2S+5D |
Extended Jacobi Quartics [32] | Jacobian | 10M+3S+1D |
Extended Projective | 8M+3S+2D | |
Hessian Curves [34] | Projective | 12M |
Generalized Hessian Curves [26] | Projective | 12M+1D |
Twisted Hessian Curves [10] | Projective | 11M |
Huff Curves [35] | Projective | 11M |
Generalized Huff Curves [55] | Projective | 11M+3D |
New Generalized Huff Curves [20] | Projective | 12M+4D |
Extended Huff Curves [48] | Projective | 10M |
PARAMETERS | SNC1 | SNC2 | SNC3 | SNC1-SNC2 | SNC1-SNC3 | SNC2-SNC3 | SNC1-SNC2-SNC3 |
Load Balancer | 500 | 500 | 3000 | 1000 | 3500 | 3500 | 4000 |
(GB/Month) for EC2 | |||||||
Web Server | 1/2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/4 | 1/6 |
(Year/Piece) for EC2 | |||||||
App Server | 1/2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/4 | 1/6 |
(Year/Piece) for EC2 | |||||||
Storage: EBS Volume | 6/2500 | 6/3000 | 6/8000 | 12/5500 | 12/10500 | 12/11000 | 18/13500 |
(Volume/GB) for EC2 | |||||||
Storage | 10 | 100 | 200 | 110 | 210 | 300 | 310 |
(TB) for S3 | |||||||
Data Transfer Out | 200 | 900 | 6400 | 1100 | 6600 | 7300 | 7700 |
(GB/Month) for EC2 | |||||||
Data Transfer In (GB/Month) | 1000 | 500 | 10000 | 1500 | 11000 | 10500 | 11500 |
for EC2 | |||||||
Data Transfer Out | 1000 | 3000 | 10000 | 4000 | 11000 | 13000 | 11000 |
(GB/Month) for CloudFront | |||||||
Data Storage | 30 | 200 | 350 | 230 | 380 | 550 | 380 |
(TB) for Dynoma | |||||||
Data Transfer Out | 200 | 250 | 1500 | 450 | 17000 | 1750 | 1700 |
(GB/Month) for Dynoma |
PARAMETERS | SNC1 | SNC2 | SNC3 | SNC1-SNC2 | SNC1-SNC3 | SNC2-SNC3 | SNC1-SNC2-SNC3 |
Load Balancer | 500 | 500 | 3000 | 1000 | 3500 | 3500 | 4000 |
(GB/Month) for EC2 | |||||||
Web Server | 1/2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/4 | 1/6 |
(Year/Piece) for EC2 | |||||||
App Server | 1/2 | 1/2 | 1/2 | 1/4 | 1/4 | 1/4 | 1/6 |
(Year/Piece) for EC2 | |||||||
Storage: EBS Volume | 6/2500 | 6/3000 | 6/8000 | 12/5500 | 12/10500 | 12/11000 | 18/13500 |
(Volume/GB) for EC2 | |||||||
Storage | 10 | 100 | 200 | 110 | 210 | 300 | 310 |
(TB) for S3 | |||||||
Data Transfer Out | 200 | 900 | 6400 | 1100 | 6600 | 7300 | 7700 |
(GB/Month) for EC2 | |||||||
Data Transfer In (GB/Month) | 1000 | 500 | 10000 | 1500 | 11000 | 10500 | 11500 |
for EC2 | |||||||
Data Transfer Out | 1000 | 3000 | 10000 | 4000 | 11000 | 13000 | 11000 |
(GB/Month) for CloudFront | |||||||
Data Storage | 30 | 200 | 350 | 230 | 380 | 550 | 380 |
(TB) for Dynoma | |||||||
Data Transfer Out | 200 | 250 | 1500 | 450 | 17000 | 1750 | 1700 |
(GB/Month) for Dynoma |
Amazon Web Services | Total Cost of Company ($) |
SNC1 | |
SNC2 | |
SNC3 | |
SNC1-SNC2 | |
SNC1-SNC3 | |
SNC2-SNC3 | |
SNC1-SNC2-SNC3 |
Amazon Web Services | Total Cost of Company ($) |
SNC1 | |
SNC2 | |
SNC3 | |
SNC1-SNC2 | |
SNC1-SNC3 | |
SNC2-SNC3 | |
SNC1-SNC2-SNC3 |
[1] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[2] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[3] |
Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051 |
[4] |
Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310 |
[5] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[6] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[7] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[8] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[9] |
Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005 |
[10] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[11] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[12] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[13] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[14] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[15] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[16] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[17] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
[18] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[19] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[20] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020449 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]