• Previous Article
    Nonlinear optimization to management problems of end-of-life vehicles with environmental protection awareness and damaged/aging degrees
  • JIMO Home
  • This Issue
  • Next Article
    A low-dimensional SDP relaxation based spatial branch and bound method for nonconvex quadratic programs
September  2020, 16(5): 2103-2116. doi: 10.3934/jimo.2019045

Existence of solution of a microwave heating model and associated optimal frequency control problems

1. 

School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China

2. 

Department of Mathematics, Guizhou Education University, Guiyang, Guizhou 550018, China

3. 

Department of Mathematics, Guizhou Minzu University, Guiyang, Guizhou 550025, China

* Corresponding author: Wei Wei

Received  October 2018 Published  May 2019

Microwave heating has been widely used in various fields during recent years. However, it also has a common problem of uneven heating. In this paper, optimal frequency control problem for microwave heating process is considered. The cost function is defined such that the temperature profile at the final stage has a relative uniform distribution in the field. The controlled system is a coupled by Maxwell equations with nonlinear heating equation. The existence of a weak solution for coupled system is proved. The weak continuity of the solution operator is also shown. Moreover, the existence of a global minimizer of the optimal frequency control problems is proved.

Citation: Yumei Liao, Wei Wei, Xianbing Luo. Existence of solution of a microwave heating model and associated optimal frequency control problems. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2103-2116. doi: 10.3934/jimo.2019045
References:
[1] V. Barbu, Aanalysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Boston, 1993.   Google Scholar
[2]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.  Google Scholar

[3]

H. O. Fattorini, Infinite Dimensional Linear Control System: The Time Optimal and Norm Optimal Problem, North-Holland Mathematics Studies, Elsevier, 2005.  Google Scholar

[4]

D. Kleis and E. W. Sachs, Optimal Control of the Sterilization of Prepackaged Food, SIAM J.Optim., 10 (2000), 1180-1195.  doi: 10.1137/S1052623497331208.  Google Scholar

[5] J. C. Kuang, General Inequality (Fourth Eedition), Shandong Science and Technology Press, Shandong, 2010.   Google Scholar
[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, AMS Trans., 23, Providence., R.I, 1968.  Google Scholar

[7]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Ⅰ. Abstract Parabolic Systems, in: Encyclopedia of Mathematics and its Applications, vol. 74, Cambridge University Press, Cambridge, 2000.  Google Scholar

[8]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Ⅱ. Abstract Hyperbolic-like Systems Over a Finite Time Horizon, Encyclopedia of Mathematics and its Applications, vol. 75, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511574801.002.  Google Scholar

[9]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[10]

B. LiJ. Tang and H. M. Yin, Optimal control microwave sterilization in food processing, Int. J. Appl. Math., 10 (2002), 13-31.   Google Scholar

[11] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.   Google Scholar
[12] A. C. Metaxas, Foundations of Electroeat, A Unified Aproach, John Wiley and Sons, New York, 1996.   Google Scholar
[13] A. C. Metaxas and R. J. Meredith, Industrial Microwave Heating in I.E.E Power Engineering Series Vol.4, Per Peregrimus Ltd., London, 1983.   Google Scholar
[14]

K. PitchaiJ. J. ChenS. BirlaD. Jones and J. Subbiah, Modeling microwave heating of frozen mashed potato in a domestic oven incorporating electromagnetic frequency spectrum, Journal of Food Engineering, 173 (2016), 124-131.  doi: 10.1016/j.jfoodeng.2015.11.002.  Google Scholar

[15]

Z. Tang, T. Hong, Y. H. Liao and etc, Frequency-selected Method to Improve Microwave Heating Performance, Applied Thermal Engineering, 131 (2018), 642-648. doi: 10.1016/j.applthermaleng.2017.12.008.  Google Scholar

[16]

F. Troltzsch, Optimal Control of Partial Differential Equations, Theory, Methods and Applications, Graduate Studies in Mathematics. Vol.112, AMS, Providence, Rhode Island, 2010. doi: 10.1090/gsm/112.  Google Scholar

[17]

W. WeiH. M. Yin and J. Tang, An Optimal Control Problem for Microwave Heating, Nonlinear Analysis, 75 (2012), 2024-2036.  doi: 10.1016/j.na.2011.10.003.  Google Scholar

[18]

H. M. Yin and W. Wei, A nonlinear optimal control problem arising from a sterilization process for packaged foods, Applied Mathematics and Optimization, 77 (2018), 499-513.  doi: 10.1007/s00245-016-9382-0.  Google Scholar

[19]

H. M. Yin, Regularity of solutions of maxwell's equations in quasi-stationary electromagnetic field and applications, Partial Differential Equations, 22 (1997), 1029-1053.  doi: 10.1080/03605309708821294.  Google Scholar

[20]

H. M. Yin, Regularity of weak solutions of maxwell's equations and applications to microwave heating, J.Differential Equations, 200 (2004), 137-161.  doi: 10.1016/j.jde.2004.01.010.  Google Scholar

[21]

H. M. Yin and W. Wei, Regularity of weak solution for a coupled system arising from a microwave heating model, European Journal of Applied Mathematics, 25 (2014), 117-131.  doi: 10.1017/S0956792513000326.  Google Scholar

[22] E. Zeidler, Nonlinear Functional and Its Applications Ⅱ, Springer, New York, 1990.  doi: 10.1007/978-1-4612-0985-0.  Google Scholar

show all references

References:
[1] V. Barbu, Aanalysis and Control of Nonlinear Infinite Dimensional Systems, Academic Press, Boston, 1993.   Google Scholar
[2]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Rhode Island, 1998. doi: 10.1090/gsm/019.  Google Scholar

[3]

H. O. Fattorini, Infinite Dimensional Linear Control System: The Time Optimal and Norm Optimal Problem, North-Holland Mathematics Studies, Elsevier, 2005.  Google Scholar

[4]

D. Kleis and E. W. Sachs, Optimal Control of the Sterilization of Prepackaged Food, SIAM J.Optim., 10 (2000), 1180-1195.  doi: 10.1137/S1052623497331208.  Google Scholar

[5] J. C. Kuang, General Inequality (Fourth Eedition), Shandong Science and Technology Press, Shandong, 2010.   Google Scholar
[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type, AMS Trans., 23, Providence., R.I, 1968.  Google Scholar

[7]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Ⅰ. Abstract Parabolic Systems, in: Encyclopedia of Mathematics and its Applications, vol. 74, Cambridge University Press, Cambridge, 2000.  Google Scholar

[8]

I. Lasiecka and R. Triggiani, Control Theory for Partial Differential Equations: Continuous and Approximation Theories. Ⅱ. Abstract Hyperbolic-like Systems Over a Finite Time Horizon, Encyclopedia of Mathematics and its Applications, vol. 75, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511574801.002.  Google Scholar

[9]

X. Li and J. Yong, Optimal Control Theory for Infinite Dimensional Systems, Birkhäuser, Boston, 1995. doi: 10.1007/978-1-4612-4260-4.  Google Scholar

[10]

B. LiJ. Tang and H. M. Yin, Optimal control microwave sterilization in food processing, Int. J. Appl. Math., 10 (2002), 13-31.   Google Scholar

[11] J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Berlin, 1971.   Google Scholar
[12] A. C. Metaxas, Foundations of Electroeat, A Unified Aproach, John Wiley and Sons, New York, 1996.   Google Scholar
[13] A. C. Metaxas and R. J. Meredith, Industrial Microwave Heating in I.E.E Power Engineering Series Vol.4, Per Peregrimus Ltd., London, 1983.   Google Scholar
[14]

K. PitchaiJ. J. ChenS. BirlaD. Jones and J. Subbiah, Modeling microwave heating of frozen mashed potato in a domestic oven incorporating electromagnetic frequency spectrum, Journal of Food Engineering, 173 (2016), 124-131.  doi: 10.1016/j.jfoodeng.2015.11.002.  Google Scholar

[15]

Z. Tang, T. Hong, Y. H. Liao and etc, Frequency-selected Method to Improve Microwave Heating Performance, Applied Thermal Engineering, 131 (2018), 642-648. doi: 10.1016/j.applthermaleng.2017.12.008.  Google Scholar

[16]

F. Troltzsch, Optimal Control of Partial Differential Equations, Theory, Methods and Applications, Graduate Studies in Mathematics. Vol.112, AMS, Providence, Rhode Island, 2010. doi: 10.1090/gsm/112.  Google Scholar

[17]

W. WeiH. M. Yin and J. Tang, An Optimal Control Problem for Microwave Heating, Nonlinear Analysis, 75 (2012), 2024-2036.  doi: 10.1016/j.na.2011.10.003.  Google Scholar

[18]

H. M. Yin and W. Wei, A nonlinear optimal control problem arising from a sterilization process for packaged foods, Applied Mathematics and Optimization, 77 (2018), 499-513.  doi: 10.1007/s00245-016-9382-0.  Google Scholar

[19]

H. M. Yin, Regularity of solutions of maxwell's equations in quasi-stationary electromagnetic field and applications, Partial Differential Equations, 22 (1997), 1029-1053.  doi: 10.1080/03605309708821294.  Google Scholar

[20]

H. M. Yin, Regularity of weak solutions of maxwell's equations and applications to microwave heating, J.Differential Equations, 200 (2004), 137-161.  doi: 10.1016/j.jde.2004.01.010.  Google Scholar

[21]

H. M. Yin and W. Wei, Regularity of weak solution for a coupled system arising from a microwave heating model, European Journal of Applied Mathematics, 25 (2014), 117-131.  doi: 10.1017/S0956792513000326.  Google Scholar

[22] E. Zeidler, Nonlinear Functional and Its Applications Ⅱ, Springer, New York, 1990.  doi: 10.1007/978-1-4612-0985-0.  Google Scholar
[1]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[2]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[3]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[4]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[5]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[6]

Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215

[7]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[8]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[9]

Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021040

[10]

John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026

[11]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[12]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[13]

Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041

[14]

Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021076

[15]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[16]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[17]

Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021102

[18]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[19]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[20]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (161)
  • HTML views (600)
  • Cited by (1)

Other articles
by authors

[Back to Top]