September  2020, 16(5): 2141-2157. doi: 10.3934/jimo.2019047

Optimal dividend of compound poisson process under a stochastic interest rate

1. 

School of Mathematical Sciences, Nankai University, Tianjin 300071, China

2. 

School of Economics and Management, Hebei University of Technology, Tianjin 300401, China

* Corresponding author: Xiaoyi Zhang

Received  January 2018 Revised  November 2018 Published  May 2019

Fund Project: Research is supported by Chinese NSF Grants No.11471171 and No.11571189

In this paper we assume the insurance wealth process is driven by the compound Poisson process. The discounting factor is modelled as a geometric Brownian motion at first and then as an exponential function of an integrated Ornstein-Uhlenbeck process. The objective is to maximize the cumulated value of expected discounted dividends up to the time of ruin. We give an explicit expression of the value function and the optimal strategy in the case of interest rate following a geometric Brownian motion. For the case of the Vasicek model, we explore some properties of the value function. Since we can not find an explicit expression for the value function in the second case, we prove that the value function is the viscosity solution of the corresponding HJB equation.

Citation: Linlin Tian, Xiaoyi Zhang, Yizhou Bai. Optimal dividend of compound poisson process under a stochastic interest rate. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2141-2157. doi: 10.3934/jimo.2019047
References:
[1]

H. Albrecher and S. Thonhauser, Optimal dividend strategies for a risk process under force of interest, Insurance Math. Econom., 43 (2008), 134-149.  doi: 10.1016/j.insmatheco.2008.03.012.  Google Scholar

[2]

H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 103 (2009), 295-320.  doi: 10.1007/BF03191909.  Google Scholar

[3]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance Math. Econom., 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[4]

P. Azcue and N. Muler, Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model, Math. Finance, 15 (2005), 261-308.  doi: 10.1111/j.0960-1627.2005.00220.x.  Google Scholar

[5]

P. Azcue and N. Muler, Optimal dividend policies for compound Poisson processes: The case of bounded dividend rates, Insurance Math. Econom., 51 (2012), 26-42.  doi: 10.1016/j.insmatheco.2012.02.011.  Google Scholar

[6]

L. BaiJ. Ma and X. Xing, Optimal dividend and investment problems under Sparre Andersen model, Ann. Appl. Probab., 27 (2017), 3588-3632.  doi: 10.1214/17-AAP1288.  Google Scholar

[7]

A. N. Borodin and P. Salminen, Handbook of Brownian motion-facts and formulae, Birkhäuser Verlag, Basel, 2002. Google Scholar

[8]

M. G. Crandall and H. Ishii, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[9]

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[10]

F. De. Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, $\Pi$ (1957), 33-443.   Google Scholar

[11]

J. Eisenberg, Optimal dividends under a stochastic interest rate, Insurance Math. Econom., 65 (2015), 259-266.  doi: 10.1016/j.insmatheco.2015.10.007.  Google Scholar

[12]

J. Eisenberg, Unrestricted consumption under a deterministic wealth and an Ornstein-Uhlenbeck process as a discount rate, Stoch. Models, 34 (2018), 139-153.  doi: 10.1080/15326349.2017.1392867.  Google Scholar

[13]

W. H. Fleming and H. M. Soner, Controlled Markov processes and Viscosity Solutions, 2$^{nd}$ edition, Springer, New York, 2006. Google Scholar

[14]

H. U. Gerber and E. S. W. Shiu, On optimal dividend strategies in the compound Poisson model, N. Am. Actuar. J., 10 (2006), 76-93.   Google Scholar

[15]

R. Loeffen, On optimality of the barrier strategy in de Finetti's dividend problem for spectrally negative Lévy processes, Ann. Appl. Probab., 18 (2008), 1669-1680.  doi: 10.1214/07-AAP504.  Google Scholar

[16]

P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Ⅰ. The dynamic programming principle and applications, Comm. Partial Diff. Eqs., 8 (1983), 1101-1174.  doi: 10.1080/03605308308820297.  Google Scholar

[17]

P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Ⅱ. Viscosity solutions and uniqueness, Comm. Partial Diff. Eqs., 8 (1983), 1229-1276.  doi: 10.1080/03605308308820301.  Google Scholar

[18]

C. Mou and A. $\acute{S}$wiȩch, Uniqueness of viscosity solutions for a class of integro-differential equations, NoDea-Nonlinear Differ. Equ. Appl., 22 (2015), 1851-1882.  doi: 10.1007/s00030-015-0347-9.  Google Scholar

[19]

J. Smoller, Stochastic Control in Insurance, Springer, New York, 2008. Google Scholar

[20]

H. M. Soner, Optimal control with state-space constraint. Ⅱ, SIAM J. Control Optim., 24 (1986), 1110-1122.  doi: 10.1137/0324067.  Google Scholar

[21]

O. A. Vasicek, An equilibrium characterization of the term structure, Finance, Economics and Mathematics, 5 (1977), 177-188.  doi: 10.1002/9781119186229.ch6.  Google Scholar

[22]

R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, Inc., New York-Basel, 1977. Google Scholar

[23]

J. Yong and X. Y. Zhou, Tochastic Controls. Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999. Google Scholar

show all references

References:
[1]

H. Albrecher and S. Thonhauser, Optimal dividend strategies for a risk process under force of interest, Insurance Math. Econom., 43 (2008), 134-149.  doi: 10.1016/j.insmatheco.2008.03.012.  Google Scholar

[2]

H. Albrecher and S. Thonhauser, Optimality results for dividend problems in insurance, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 103 (2009), 295-320.  doi: 10.1007/BF03191909.  Google Scholar

[3]

S. Asmussen and M. Taksar, Controlled diffusion models for optimal dividend pay-out, Insurance Math. Econom., 20 (1997), 1-15.  doi: 10.1016/S0167-6687(96)00017-0.  Google Scholar

[4]

P. Azcue and N. Muler, Optimal reinsurance and dividend distribution policies in the Cramér-Lundberg model, Math. Finance, 15 (2005), 261-308.  doi: 10.1111/j.0960-1627.2005.00220.x.  Google Scholar

[5]

P. Azcue and N. Muler, Optimal dividend policies for compound Poisson processes: The case of bounded dividend rates, Insurance Math. Econom., 51 (2012), 26-42.  doi: 10.1016/j.insmatheco.2012.02.011.  Google Scholar

[6]

L. BaiJ. Ma and X. Xing, Optimal dividend and investment problems under Sparre Andersen model, Ann. Appl. Probab., 27 (2017), 3588-3632.  doi: 10.1214/17-AAP1288.  Google Scholar

[7]

A. N. Borodin and P. Salminen, Handbook of Brownian motion-facts and formulae, Birkhäuser Verlag, Basel, 2002. Google Scholar

[8]

M. G. Crandall and H. Ishii, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[9]

M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.  doi: 10.1090/S0002-9947-1983-0690039-8.  Google Scholar

[10]

F. De. Finetti, Su un'impostazione alternativa della teoria collettiva del rischio, Transactions of the XVth International Congress of Actuaries, $\Pi$ (1957), 33-443.   Google Scholar

[11]

J. Eisenberg, Optimal dividends under a stochastic interest rate, Insurance Math. Econom., 65 (2015), 259-266.  doi: 10.1016/j.insmatheco.2015.10.007.  Google Scholar

[12]

J. Eisenberg, Unrestricted consumption under a deterministic wealth and an Ornstein-Uhlenbeck process as a discount rate, Stoch. Models, 34 (2018), 139-153.  doi: 10.1080/15326349.2017.1392867.  Google Scholar

[13]

W. H. Fleming and H. M. Soner, Controlled Markov processes and Viscosity Solutions, 2$^{nd}$ edition, Springer, New York, 2006. Google Scholar

[14]

H. U. Gerber and E. S. W. Shiu, On optimal dividend strategies in the compound Poisson model, N. Am. Actuar. J., 10 (2006), 76-93.   Google Scholar

[15]

R. Loeffen, On optimality of the barrier strategy in de Finetti's dividend problem for spectrally negative Lévy processes, Ann. Appl. Probab., 18 (2008), 1669-1680.  doi: 10.1214/07-AAP504.  Google Scholar

[16]

P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Ⅰ. The dynamic programming principle and applications, Comm. Partial Diff. Eqs., 8 (1983), 1101-1174.  doi: 10.1080/03605308308820297.  Google Scholar

[17]

P.-L. Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Ⅱ. Viscosity solutions and uniqueness, Comm. Partial Diff. Eqs., 8 (1983), 1229-1276.  doi: 10.1080/03605308308820301.  Google Scholar

[18]

C. Mou and A. $\acute{S}$wiȩch, Uniqueness of viscosity solutions for a class of integro-differential equations, NoDea-Nonlinear Differ. Equ. Appl., 22 (2015), 1851-1882.  doi: 10.1007/s00030-015-0347-9.  Google Scholar

[19]

J. Smoller, Stochastic Control in Insurance, Springer, New York, 2008. Google Scholar

[20]

H. M. Soner, Optimal control with state-space constraint. Ⅱ, SIAM J. Control Optim., 24 (1986), 1110-1122.  doi: 10.1137/0324067.  Google Scholar

[21]

O. A. Vasicek, An equilibrium characterization of the term structure, Finance, Economics and Mathematics, 5 (1977), 177-188.  doi: 10.1002/9781119186229.ch6.  Google Scholar

[22]

R. L. Wheeden and A. Zygmund, Measure and Integral, Marcel Dekker, Inc., New York-Basel, 1977. Google Scholar

[23]

J. Yong and X. Y. Zhou, Tochastic Controls. Hamiltonian Systems and HJB Equations, Springer-Verlag, New York, 1999. Google Scholar

Figure 1.  The shape of the value function
Figure 2.  Left picture: The sensitivity of $ V $ about parameter $ \beta $. Right picture: The sensitivity of $ V $ about parameter $ \lambda $
Figure 3.  the realization of $ \exp\{-U_s^r\} $, $ r = 1, a = 1, {\hat{\delta }} = 1 $ for $ \hat{b} = 2 $ and $ \hat{b} = -2 $
[1]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[5]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[8]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[11]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[15]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[16]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[17]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[18]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (140)
  • HTML views (572)
  • Cited by (0)

Other articles
by authors

[Back to Top]