[1]
|
S. Atluri and S. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22 (1998), 117-127.
doi: 10.1007/s004660050346.
|
[2]
|
S. Basu and A. Zerzghi, Multidimensional digital filter approach for numerical solution of a class of PDEs of the propagating wave type, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187), 5 (1998), 74–77, Monterey, California, USA.
doi: 10.1109/ISCAS.1998.694411.
|
[3]
|
S. Billbao, Wave and Scattering Methods for Numerical Simulation, New York: Wiley, 2004.
doi: 10.1002/0470870192.
|
[4]
|
B. P. Bogert, M. J. R. Healy and J. W. Tukey, The quefrency alanysis of time series for echoes: Cepstrum, pseudo autocovariance, cross-cepstrum and saphe cracking, Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) New York: Wiley, 1963, Chapter 15, 209–243.
|
[5]
|
T. Bui, M. Nguyen and C. Zhang, An efficient meshfree method for vibration analysis of laminated composite plates, Computational Mechanics, 48 (2011), 175-193.
doi: 10.1007/s00466-011-0591-8.
|
[6]
|
R. Byrd, M. Hribar and J. Nocedal, An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), 877-900.
doi: 10.1137/S1052623497325107.
|
[7]
|
K. Y. Dai, G. R. Liu, K. M. Lim and X. L. Chen, A mesh-free method for static and free vibration analysis of shear deformation laminated composite plates, J. Sound & Vibration, 269 (2004), 633-652.
|
[8]
|
Z. Dong, B. Tan, Y. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu, Strong stability of an optimal control hybrid system in fed-batch fermentation, International Journal of Biomathematics, 11 (2018), 1850045, 17pp.
doi: 10.1142/S1793524518500456.
|
[9]
|
A. A. J. Ferreira and G. Fasshauer, Analysis of natural frequencies of composite plates by an RBF-pseudospectral method, Composite Structures, 79 (2007), 202-210.
doi: 10.1016/j.compstruct.2005.12.004.
|
[10]
|
A. J. M. Ferreira, C. M. C. Roque and R. M. N. Jorge, Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions., Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4265-4278.
doi: 10.1016/j.cma.2004.11.004.
|
[11]
|
A. Fettweis, Wave digital filters: Theory and practice, Proceedings of the IEEE, 74 (1986), 270-327.
doi: 10.1109/PROC.1986.13458.
|
[12]
|
A. Fettweis and G. Nitsche, Numerical integration of partial differential equations using principles of multidimensional wave digital filters, J. VLSI Signal Processing, 3 (1991), 7-24.
doi: 10.1007/978-1-4615-4036-6_2.
|
[13]
|
A. Fettweis and G. Nitsche, Transformation approach to numerical integrating PDEs by means of WDF principles, Multidimensional Systems and Signal Processing, 2 (1991), 127-159.
doi: 10.1007/BF01938221.
|
[14]
|
A. Fettweis, Robust numerical integration using wave-digital concepts, Multidim. Syst. Signal Process., 17 (2006), 7-25.
doi: 10.1007/s11045-005-6236-3.
|
[15]
|
A. Fettweis and K. Meerkötter, On parasitic oscillations in digital filters under looped conditions, IEEE Transactions on Circuits and Systems, 25 (1978), 1060-1066.
doi: 10.1109/TCS.1978.1084425.
|
[16]
|
D. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989.
|
[17]
|
S. Han, A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications, 22 (1977), 297-309.
doi: 10.1007/BF00932858.
|
[18]
|
M. Jones, Mechanics of Composite Materials, 2/E. Taylor & Francis, London, 1998.
doi: 10.1201/9781498711067.
|
[19]
|
K. Kant and K. Swaminathan, Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments, Composite Structures, 49 (2000), 65-75.
doi: 10.1016/S0263-8223(99)00126-9.
|
[20]
|
A. Khdeir and L. Librescu, Analysis of symmetric cross-ply elastic plates using a higher-order theory, Part II: buckling and free vibration, Composite Structures, 9 (1988), 259-277.
|
[21]
|
A. Y. T. Leung, C. Xiao, B. Zhu and S. Yuanet, Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-element, Composite Structures, 68 (2005), 167-175.
doi: 10.1016/j.compstruct.2004.03.011.
|
[22]
|
R. Lewis and V. Torczon, A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds, SIAM Journal on Optimization, 12 (2002), 1075-1089.
doi: 10.1137/S1052623498339727.
|
[23]
|
K. Liew, Solving the vibration of thick symmetric laminates by Reissner/Mindlin plates theory and the p-Ritz method, Journal of Sound and Vibration, 198 (1996), 343-360.
doi: 10.1006/jsvi.1996.0574.
|
[24]
|
K. M. Liew, Y. Q. Huang and J. N. Reddy, Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Computer Methods in Applied Mechanics and Engineering, 192 (2003), 2203-2222.
doi: 10.1016/S0045-7825(03)00238-X.
|
[25]
|
X. Liu and A. Fettweis, Multidimensional digital filtering by using parallel algorithms based on diagonal processing, Multidimensional Systems and Signal Processing, 1 (1990), 51-66.
doi: 10.1007/BF01812206.
|
[26]
|
P. Malekzadeh and A. Setoodeh, Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundations by DQM, Composite Structures, 80 (2007), 569-579.
doi: 10.1016/j.compstruct.2006.07.004.
|
[27]
|
P. Malekzadeh, Differential quadrature large amplitude free vibration analysis of laminated skew plates based on FSDT, Composite Structures, 83 (2008), 189-200.
doi: 10.1016/j.compstruct.2007.04.007.
|
[28]
|
F. Mohammadi and R. Sedaghati, Nonlinear free vibration analysis of sandwich shell structures with a constrained electrorheological fluid layer, Smart Materials and Structures, 21 (2012), 075035.
doi: 10.1088/0964-1726/21/7/075035.
|
[29]
|
P. M. Mohite and C. S. Upadhyay, Region-by-region modeling of laminated composite plates, Computers & Structures, 85 (2007), 1808-1827.
doi: 10.1016/j.compstruc.2007.04.005.
|
[30]
|
D. Ngo-Cong, N. Mai-Duy, W. Karunasena and T. Tran-Cong, Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method, Computers & Structures, 89 (2011), 1-13.
doi: 10.1016/j.compstruc.2010.07.012.
|
[31]
|
H. Nguyen-Van, N. Mai-Duy and T. Tran-Cong, Free vibration analysis of laminated plate/shell structures based on FSDT with a stabilized nodal-integrated quadrilateral element, Journal of Sound and Vibration, 313 (2008), 205-223.
doi: 10.1016/j.jsv.2007.11.043.
|
[32]
|
G. Nitsche, Numerische L$\ddot{o}$sung partieller Differentialgleichungen mit hilfe von Wellendigitalfiltern., PhD thesis, Ruhr-Universit$\ddot{a}$t Bochum, 1993.
|
[33]
|
J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research, Springer Verlag, 1999.
doi: 10.1007/b98874.
|
[34]
|
O. Ochoa and J. Reddy, Finite Element Analysis of Composite Laminates (Solid Mechanics and Its Applications), Kluwer Acedemic Publisher, The Netherlands, 1992.
|
[35]
|
M. K. Pandit, et al., Free vibration analysis of laminated composite rectangular plate using finite element method, Journal of Reinforced Plastics & Composites, 26 (2007), 69-80.
|
[36]
|
J. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2/ed, CRC Press, London, 2004.
|
[37]
|
C. Roque, D. Cunha, C. Shu and A. A. J. Ferreira, A local radial basis functions-Finite differences technique for the analysis of composite plates, Engineering Analysis with Boundary Elements, 35 (2011), 363-374.
doi: 10.1016/j.enganabound.2010.09.012.
|
[38]
|
C. H. Tseng, Modelling and visualization of a time-dependent shallow water system using nonlinear Kirchhoff circuit, IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (2012), 1265-1277.
doi: 10.1109/TCSI.2011.2173511.
|
[39]
|
C. H. Tseng, Numerical stability verification of a two-dimensional time-dependent nonlinear shallow water system using multidimensional wave digital filtering network, Circuits, Systems and Signal Processing, 32 (2013), 299-319.
doi: 10.1007/s00034-012-9461-7.
|
[40]
|
C. H. Tseng, Analysis of parallel multidimensional wave digital filtering network on IBM cell broadband engine, Journal of Computational Engineering, 2014 (2014), 1-13.
doi: 10.1155/2014/793635.
|
[41]
|
C. H. Tseng and S. Lawson, Initial and boundary conditions in multidimensional wave digital filter algorithms for plate vibration, IEEE Transactions on Circuits and Systems I: Regular papers, 51 (2004), 1648-1663.
doi: 10.1109/TCSI.2004.832796.
|
[42]
|
C. H. Tseng, An optimal modeling of multidimensional wave digital filtering network for free vibration analysis of symmetrically laminated composite FSDT plates, Mechanical Systems and Signal Processing, 52/53 (2015), 465-494.
doi: 10.1016/j.ymssp.2014.07.001.
|
[43]
|
C. H. Tseng, The multidimensional wave digital filtering network for dynamic vibration analysis of laminated composite FSDT plates, TW patent I494783, 1/8/2015-30/3/2034.
|
[44]
|
C. H. Tseng, Static bending deflection and free vibration analysis of moderate thick symmetric laminated plates using multidimensional wave digital filters, Mechanical Systems and Signal Processing, 106 (2018), 367-394.
doi: 10.1016/j.ymssp.2017.12.044.
|
[45]
|
C. H. Tseng, The full parallel architecture of multidimensional wave digital filtering network., TW patent I501149, 21/9/2015-14/10/2033.
|
[46]
|
S. Xiang, et al., Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory. Thin-Walled Structures, 47 (2009), 1265–1271.
doi: 10.1016/j.tws.2009.04.002.
|
[47]
|
J. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu, Strong stability of a nonlinear multi-stage dynamic system in batch culture of glycerol bioconversion to 1, 3-propanediol, Mathematical Modelling and Analysis, 21 (2016), 159-173.
doi: 10.3846/13926292.2016.1142481.
|
[48]
|
J. Zhang, J. Yuan, Z. Dong, E. Feng, H. Yin and Z. Xiu, Strong stability of optimal design to dynamic system for the fed-batch culture, International Journal of Biomathematics, 10 (2017), 1750018, 18pp.
doi: 10.1142/S1793524517500188.
|