
-
Previous Article
Improved SVRG for finite sum structure optimization with application to binary classification
- JIMO Home
- This Issue
-
Next Article
Optimal investment-reinsurance policy with regime switching and value-at-risk constraint
Analytical modeling of laminated composite plates using Kirchhoff circuit and wave digital filters
Department of Information Engineering, Kun Shan University, Taiwan |
A physical-based numerical algorithm using Kirchhoff circuit is detailed for modelling the free vibration of moderate thick symmetrically laminated plates based on the first order shear deformation theory (FSDT). With the help of multidimensional passivity of analog circuit and nonlinear optimization solvers, the philosophy gives rise to a nonlinear programming (NLP) model that can apply further to explore stability characteristics and optimum performance of the resultant multidimensional wave digital filtering network representing the FSDT plate. Various optimization methods exploiting gradient-based and direct search methods are adopted with efficient broad search power to tackle the NLP model. As a result, the necessary Courant-Friedrichs-Levy stability criterion can be fully satisfied at all time with least restriction on the spatially discretized geometry of the scattering problem. With full stability guaranteed, the waveform is analyzed by the power cepstrum for spectra peaks detection, which has led to more accurate estimate of various vibration effects in predicting nature frequencies with different fiber orientations, stacking sequences, stiffness ratios and boundary conditions. These results have shown in excellent agreement with early published works based on the finite element solutions of the high-order shear deformation theory and other well known numerical techniques.
References:
[1] |
S. Atluri and S. Zhu,
A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22 (1998), 117-127.
doi: 10.1007/s004660050346. |
[2] |
S. Basu and A. Zerzghi, Multidimensional digital filter approach for numerical solution of a class of PDEs of the propagating wave type, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187), 5 (1998), 74–77, Monterey, California, USA.
doi: 10.1109/ISCAS.1998.694411. |
[3] |
S. Billbao, Wave and Scattering Methods for Numerical Simulation, New York: Wiley, 2004.
doi: 10.1002/0470870192. |
[4] |
B. P. Bogert, M. J. R. Healy and J. W. Tukey, The quefrency alanysis of time series for echoes: Cepstrum, pseudo autocovariance, cross-cepstrum and saphe cracking, Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) New York: Wiley, 1963, Chapter 15, 209–243. Google Scholar |
[5] |
T. Bui, M. Nguyen and C. Zhang,
An efficient meshfree method for vibration analysis of laminated composite plates, Computational Mechanics, 48 (2011), 175-193.
doi: 10.1007/s00466-011-0591-8. |
[6] |
R. Byrd, M. Hribar and J. Nocedal,
An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), 877-900.
doi: 10.1137/S1052623497325107. |
[7] |
K. Y. Dai, G. R. Liu, K. M. Lim and X. L. Chen, A mesh-free method for static and free vibration analysis of shear deformation laminated composite plates, J. Sound & Vibration, 269 (2004), 633-652. Google Scholar |
[8] |
Z. Dong, B. Tan, Y. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu, Strong stability of an optimal control hybrid system in fed-batch fermentation, International Journal of Biomathematics, 11 (2018), 1850045, 17pp.
doi: 10.1142/S1793524518500456. |
[9] |
A. A. J. Ferreira and G. Fasshauer,
Analysis of natural frequencies of composite plates by an RBF-pseudospectral method, Composite Structures, 79 (2007), 202-210.
doi: 10.1016/j.compstruct.2005.12.004. |
[10] |
A. J. M. Ferreira, C. M. C. Roque and R. M. N. Jorge,
Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions., Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4265-4278.
doi: 10.1016/j.cma.2004.11.004. |
[11] |
A. Fettweis,
Wave digital filters: Theory and practice, Proceedings of the IEEE, 74 (1986), 270-327.
doi: 10.1109/PROC.1986.13458. |
[12] |
A. Fettweis and G. Nitsche,
Numerical integration of partial differential equations using principles of multidimensional wave digital filters, J. VLSI Signal Processing, 3 (1991), 7-24.
doi: 10.1007/978-1-4615-4036-6_2. |
[13] |
A. Fettweis and G. Nitsche,
Transformation approach to numerical integrating PDEs by means of WDF principles, Multidimensional Systems and Signal Processing, 2 (1991), 127-159.
doi: 10.1007/BF01938221. |
[14] |
A. Fettweis,
Robust numerical integration using wave-digital concepts, Multidim. Syst. Signal Process., 17 (2006), 7-25.
doi: 10.1007/s11045-005-6236-3. |
[15] |
A. Fettweis and K. Meerkötter,
On parasitic oscillations in digital filters under looped conditions, IEEE Transactions on Circuits and Systems, 25 (1978), 1060-1066.
doi: 10.1109/TCS.1978.1084425. |
[16] |
D. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989. Google Scholar |
[17] |
S. Han,
A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications, 22 (1977), 297-309.
doi: 10.1007/BF00932858. |
[18] |
M. Jones, Mechanics of Composite Materials, 2/E. Taylor & Francis, London, 1998.
doi: 10.1201/9781498711067. |
[19] |
K. Kant and K. Swaminathan,
Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments, Composite Structures, 49 (2000), 65-75.
doi: 10.1016/S0263-8223(99)00126-9. |
[20] |
A. Khdeir and L. Librescu, Analysis of symmetric cross-ply elastic plates using a higher-order theory, Part II: buckling and free vibration, Composite Structures, 9 (1988), 259-277. Google Scholar |
[21] |
A. Y. T. Leung, C. Xiao, B. Zhu and S. Yuanet,
Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-element, Composite Structures, 68 (2005), 167-175.
doi: 10.1016/j.compstruct.2004.03.011. |
[22] |
R. Lewis and V. Torczon,
A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds, SIAM Journal on Optimization, 12 (2002), 1075-1089.
doi: 10.1137/S1052623498339727. |
[23] |
K. Liew,
Solving the vibration of thick symmetric laminates by Reissner/Mindlin plates theory and the p-Ritz method, Journal of Sound and Vibration, 198 (1996), 343-360.
doi: 10.1006/jsvi.1996.0574. |
[24] |
K. M. Liew, Y. Q. Huang and J. N. Reddy,
Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Computer Methods in Applied Mechanics and Engineering, 192 (2003), 2203-2222.
doi: 10.1016/S0045-7825(03)00238-X. |
[25] |
X. Liu and A. Fettweis,
Multidimensional digital filtering by using parallel algorithms based on diagonal processing, Multidimensional Systems and Signal Processing, 1 (1990), 51-66.
doi: 10.1007/BF01812206. |
[26] |
P. Malekzadeh and A. Setoodeh,
Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundations by DQM, Composite Structures, 80 (2007), 569-579.
doi: 10.1016/j.compstruct.2006.07.004. |
[27] |
P. Malekzadeh,
Differential quadrature large amplitude free vibration analysis of laminated skew plates based on FSDT, Composite Structures, 83 (2008), 189-200.
doi: 10.1016/j.compstruct.2007.04.007. |
[28] |
F. Mohammadi and R. Sedaghati, Nonlinear free vibration analysis of sandwich shell structures with a constrained electrorheological fluid layer, Smart Materials and Structures, 21 (2012), 075035.
doi: 10.1088/0964-1726/21/7/075035. |
[29] |
P. M. Mohite and C. S. Upadhyay,
Region-by-region modeling of laminated composite plates, Computers & Structures, 85 (2007), 1808-1827.
doi: 10.1016/j.compstruc.2007.04.005. |
[30] |
D. Ngo-Cong, N. Mai-Duy, W. Karunasena and T. Tran-Cong,
Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method, Computers & Structures, 89 (2011), 1-13.
doi: 10.1016/j.compstruc.2010.07.012. |
[31] |
H. Nguyen-Van, N. Mai-Duy and T. Tran-Cong,
Free vibration analysis of laminated plate/shell structures based on FSDT with a stabilized nodal-integrated quadrilateral element, Journal of Sound and Vibration, 313 (2008), 205-223.
doi: 10.1016/j.jsv.2007.11.043. |
[32] |
G. Nitsche, Numerische L$\ddot{o}$sung partieller Differentialgleichungen mit hilfe von Wellendigitalfiltern., PhD thesis, Ruhr-Universit$\ddot{a}$t Bochum, 1993. Google Scholar |
[33] |
J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research, Springer Verlag, 1999.
doi: 10.1007/b98874. |
[34] |
O. Ochoa and J. Reddy, Finite Element Analysis of Composite Laminates (Solid Mechanics and Its Applications), Kluwer Acedemic Publisher, The Netherlands, 1992. Google Scholar |
[35] |
M. K. Pandit, Free vibration analysis of laminated composite rectangular plate using finite element method, Journal of Reinforced Plastics & Composites, 26 (2007), 69-80. Google Scholar |
[36] | J. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2/ed, CRC Press, London, 2004. Google Scholar |
[37] |
C. Roque, D. Cunha, C. Shu and A. A. J. Ferreira,
A local radial basis functions-Finite differences technique for the analysis of composite plates, Engineering Analysis with Boundary Elements, 35 (2011), 363-374.
doi: 10.1016/j.enganabound.2010.09.012. |
[38] |
C. H. Tseng,
Modelling and visualization of a time-dependent shallow water system using nonlinear Kirchhoff circuit, IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (2012), 1265-1277.
doi: 10.1109/TCSI.2011.2173511. |
[39] |
C. H. Tseng,
Numerical stability verification of a two-dimensional time-dependent nonlinear shallow water system using multidimensional wave digital filtering network, Circuits, Systems and Signal Processing, 32 (2013), 299-319.
doi: 10.1007/s00034-012-9461-7. |
[40] |
C. H. Tseng,
Analysis of parallel multidimensional wave digital filtering network on IBM cell broadband engine, Journal of Computational Engineering, 2014 (2014), 1-13.
doi: 10.1155/2014/793635. |
[41] |
C. H. Tseng and S. Lawson,
Initial and boundary conditions in multidimensional wave digital filter algorithms for plate vibration, IEEE Transactions on Circuits and Systems I: Regular papers, 51 (2004), 1648-1663.
doi: 10.1109/TCSI.2004.832796. |
[42] |
C. H. Tseng,
An optimal modeling of multidimensional wave digital filtering network for free vibration analysis of symmetrically laminated composite FSDT plates, Mechanical Systems and Signal Processing, 52/53 (2015), 465-494.
doi: 10.1016/j.ymssp.2014.07.001. |
[43] |
C. H. Tseng, The multidimensional wave digital filtering network for dynamic vibration analysis of laminated composite FSDT plates, TW patent I494783, 1/8/2015-30/3/2034. Google Scholar |
[44] |
C. H. Tseng,
Static bending deflection and free vibration analysis of moderate thick symmetric laminated plates using multidimensional wave digital filters, Mechanical Systems and Signal Processing, 106 (2018), 367-394.
doi: 10.1016/j.ymssp.2017.12.044. |
[45] |
C. H. Tseng, The full parallel architecture of multidimensional wave digital filtering network., TW patent I501149, 21/9/2015-14/10/2033. Google Scholar |
[46] |
S. Xiang, et al., Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory. Thin-Walled Structures, 47 (2009), 1265–1271.
doi: 10.1016/j.tws.2009.04.002. |
[47] |
J. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu,
Strong stability of a nonlinear multi-stage dynamic system in batch culture of glycerol bioconversion to 1, 3-propanediol, Mathematical Modelling and Analysis, 21 (2016), 159-173.
doi: 10.3846/13926292.2016.1142481. |
[48] |
J. Zhang, J. Yuan, Z. Dong, E. Feng, H. Yin and Z. Xiu, Strong stability of optimal design to dynamic system for the fed-batch culture, International Journal of Biomathematics, 10 (2017), 1750018, 18pp.
doi: 10.1142/S1793524517500188. |
show all references
References:
[1] |
S. Atluri and S. Zhu,
A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22 (1998), 117-127.
doi: 10.1007/s004660050346. |
[2] |
S. Basu and A. Zerzghi, Multidimensional digital filter approach for numerical solution of a class of PDEs of the propagating wave type, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187), 5 (1998), 74–77, Monterey, California, USA.
doi: 10.1109/ISCAS.1998.694411. |
[3] |
S. Billbao, Wave and Scattering Methods for Numerical Simulation, New York: Wiley, 2004.
doi: 10.1002/0470870192. |
[4] |
B. P. Bogert, M. J. R. Healy and J. W. Tukey, The quefrency alanysis of time series for echoes: Cepstrum, pseudo autocovariance, cross-cepstrum and saphe cracking, Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) New York: Wiley, 1963, Chapter 15, 209–243. Google Scholar |
[5] |
T. Bui, M. Nguyen and C. Zhang,
An efficient meshfree method for vibration analysis of laminated composite plates, Computational Mechanics, 48 (2011), 175-193.
doi: 10.1007/s00466-011-0591-8. |
[6] |
R. Byrd, M. Hribar and J. Nocedal,
An interior point algorithm for large-scale nonlinear programming, SIAM Journal on Optimization, 9 (1999), 877-900.
doi: 10.1137/S1052623497325107. |
[7] |
K. Y. Dai, G. R. Liu, K. M. Lim and X. L. Chen, A mesh-free method for static and free vibration analysis of shear deformation laminated composite plates, J. Sound & Vibration, 269 (2004), 633-652. Google Scholar |
[8] |
Z. Dong, B. Tan, Y. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu, Strong stability of an optimal control hybrid system in fed-batch fermentation, International Journal of Biomathematics, 11 (2018), 1850045, 17pp.
doi: 10.1142/S1793524518500456. |
[9] |
A. A. J. Ferreira and G. Fasshauer,
Analysis of natural frequencies of composite plates by an RBF-pseudospectral method, Composite Structures, 79 (2007), 202-210.
doi: 10.1016/j.compstruct.2005.12.004. |
[10] |
A. J. M. Ferreira, C. M. C. Roque and R. M. N. Jorge,
Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions., Computer Methods in Applied Mechanics and Engineering, 194 (2005), 4265-4278.
doi: 10.1016/j.cma.2004.11.004. |
[11] |
A. Fettweis,
Wave digital filters: Theory and practice, Proceedings of the IEEE, 74 (1986), 270-327.
doi: 10.1109/PROC.1986.13458. |
[12] |
A. Fettweis and G. Nitsche,
Numerical integration of partial differential equations using principles of multidimensional wave digital filters, J. VLSI Signal Processing, 3 (1991), 7-24.
doi: 10.1007/978-1-4615-4036-6_2. |
[13] |
A. Fettweis and G. Nitsche,
Transformation approach to numerical integrating PDEs by means of WDF principles, Multidimensional Systems and Signal Processing, 2 (1991), 127-159.
doi: 10.1007/BF01938221. |
[14] |
A. Fettweis,
Robust numerical integration using wave-digital concepts, Multidim. Syst. Signal Process., 17 (2006), 7-25.
doi: 10.1007/s11045-005-6236-3. |
[15] |
A. Fettweis and K. Meerkötter,
On parasitic oscillations in digital filters under looped conditions, IEEE Transactions on Circuits and Systems, 25 (1978), 1060-1066.
doi: 10.1109/TCS.1978.1084425. |
[16] |
D. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, 1989. Google Scholar |
[17] |
S. Han,
A globally convergent method for nonlinear programming, Journal of Optimization Theory and Applications, 22 (1977), 297-309.
doi: 10.1007/BF00932858. |
[18] |
M. Jones, Mechanics of Composite Materials, 2/E. Taylor & Francis, London, 1998.
doi: 10.1201/9781498711067. |
[19] |
K. Kant and K. Swaminathan,
Estimation of transverse/interlaminar stresses in laminated composites-a selective review and survey of current developments, Composite Structures, 49 (2000), 65-75.
doi: 10.1016/S0263-8223(99)00126-9. |
[20] |
A. Khdeir and L. Librescu, Analysis of symmetric cross-ply elastic plates using a higher-order theory, Part II: buckling and free vibration, Composite Structures, 9 (1988), 259-277. Google Scholar |
[21] |
A. Y. T. Leung, C. Xiao, B. Zhu and S. Yuanet,
Free vibration of laminated composite plates subjected to in-plane stresses using trapezoidal p-element, Composite Structures, 68 (2005), 167-175.
doi: 10.1016/j.compstruct.2004.03.011. |
[22] |
R. Lewis and V. Torczon,
A globally convergent augmented Lagrangian pattern search algorithm for optimization with general constraints and simple bounds, SIAM Journal on Optimization, 12 (2002), 1075-1089.
doi: 10.1137/S1052623498339727. |
[23] |
K. Liew,
Solving the vibration of thick symmetric laminates by Reissner/Mindlin plates theory and the p-Ritz method, Journal of Sound and Vibration, 198 (1996), 343-360.
doi: 10.1006/jsvi.1996.0574. |
[24] |
K. M. Liew, Y. Q. Huang and J. N. Reddy,
Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method, Computer Methods in Applied Mechanics and Engineering, 192 (2003), 2203-2222.
doi: 10.1016/S0045-7825(03)00238-X. |
[25] |
X. Liu and A. Fettweis,
Multidimensional digital filtering by using parallel algorithms based on diagonal processing, Multidimensional Systems and Signal Processing, 1 (1990), 51-66.
doi: 10.1007/BF01812206. |
[26] |
P. Malekzadeh and A. Setoodeh,
Large deformation analysis of moderately thick laminated plates on nonlinear elastic foundations by DQM, Composite Structures, 80 (2007), 569-579.
doi: 10.1016/j.compstruct.2006.07.004. |
[27] |
P. Malekzadeh,
Differential quadrature large amplitude free vibration analysis of laminated skew plates based on FSDT, Composite Structures, 83 (2008), 189-200.
doi: 10.1016/j.compstruct.2007.04.007. |
[28] |
F. Mohammadi and R. Sedaghati, Nonlinear free vibration analysis of sandwich shell structures with a constrained electrorheological fluid layer, Smart Materials and Structures, 21 (2012), 075035.
doi: 10.1088/0964-1726/21/7/075035. |
[29] |
P. M. Mohite and C. S. Upadhyay,
Region-by-region modeling of laminated composite plates, Computers & Structures, 85 (2007), 1808-1827.
doi: 10.1016/j.compstruc.2007.04.005. |
[30] |
D. Ngo-Cong, N. Mai-Duy, W. Karunasena and T. Tran-Cong,
Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method, Computers & Structures, 89 (2011), 1-13.
doi: 10.1016/j.compstruc.2010.07.012. |
[31] |
H. Nguyen-Van, N. Mai-Duy and T. Tran-Cong,
Free vibration analysis of laminated plate/shell structures based on FSDT with a stabilized nodal-integrated quadrilateral element, Journal of Sound and Vibration, 313 (2008), 205-223.
doi: 10.1016/j.jsv.2007.11.043. |
[32] |
G. Nitsche, Numerische L$\ddot{o}$sung partieller Differentialgleichungen mit hilfe von Wellendigitalfiltern., PhD thesis, Ruhr-Universit$\ddot{a}$t Bochum, 1993. Google Scholar |
[33] |
J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research, Springer Verlag, 1999.
doi: 10.1007/b98874. |
[34] |
O. Ochoa and J. Reddy, Finite Element Analysis of Composite Laminates (Solid Mechanics and Its Applications), Kluwer Acedemic Publisher, The Netherlands, 1992. Google Scholar |
[35] |
M. K. Pandit, Free vibration analysis of laminated composite rectangular plate using finite element method, Journal of Reinforced Plastics & Composites, 26 (2007), 69-80. Google Scholar |
[36] | J. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2/ed, CRC Press, London, 2004. Google Scholar |
[37] |
C. Roque, D. Cunha, C. Shu and A. A. J. Ferreira,
A local radial basis functions-Finite differences technique for the analysis of composite plates, Engineering Analysis with Boundary Elements, 35 (2011), 363-374.
doi: 10.1016/j.enganabound.2010.09.012. |
[38] |
C. H. Tseng,
Modelling and visualization of a time-dependent shallow water system using nonlinear Kirchhoff circuit, IEEE Transactions on Circuits and Systems I: Regular Papers, 59 (2012), 1265-1277.
doi: 10.1109/TCSI.2011.2173511. |
[39] |
C. H. Tseng,
Numerical stability verification of a two-dimensional time-dependent nonlinear shallow water system using multidimensional wave digital filtering network, Circuits, Systems and Signal Processing, 32 (2013), 299-319.
doi: 10.1007/s00034-012-9461-7. |
[40] |
C. H. Tseng,
Analysis of parallel multidimensional wave digital filtering network on IBM cell broadband engine, Journal of Computational Engineering, 2014 (2014), 1-13.
doi: 10.1155/2014/793635. |
[41] |
C. H. Tseng and S. Lawson,
Initial and boundary conditions in multidimensional wave digital filter algorithms for plate vibration, IEEE Transactions on Circuits and Systems I: Regular papers, 51 (2004), 1648-1663.
doi: 10.1109/TCSI.2004.832796. |
[42] |
C. H. Tseng,
An optimal modeling of multidimensional wave digital filtering network for free vibration analysis of symmetrically laminated composite FSDT plates, Mechanical Systems and Signal Processing, 52/53 (2015), 465-494.
doi: 10.1016/j.ymssp.2014.07.001. |
[43] |
C. H. Tseng, The multidimensional wave digital filtering network for dynamic vibration analysis of laminated composite FSDT plates, TW patent I494783, 1/8/2015-30/3/2034. Google Scholar |
[44] |
C. H. Tseng,
Static bending deflection and free vibration analysis of moderate thick symmetric laminated plates using multidimensional wave digital filters, Mechanical Systems and Signal Processing, 106 (2018), 367-394.
doi: 10.1016/j.ymssp.2017.12.044. |
[45] |
C. H. Tseng, The full parallel architecture of multidimensional wave digital filtering network., TW patent I501149, 21/9/2015-14/10/2033. Google Scholar |
[46] |
S. Xiang, et al., Natural frequencies of generally laminated composite plates using the Gaussian radial basis function and first-order shear deformation theory. Thin-Walled Structures, 47 (2009), 1265–1271.
doi: 10.1016/j.tws.2009.04.002. |
[47] |
J. Zhang, J. Yuan, E. Feng, H. Yin and Z. Xiu,
Strong stability of a nonlinear multi-stage dynamic system in batch culture of glycerol bioconversion to 1, 3-propanediol, Mathematical Modelling and Analysis, 21 (2016), 159-173.
doi: 10.3846/13926292.2016.1142481. |
[48] |
J. Zhang, J. Yuan, Z. Dong, E. Feng, H. Yin and Z. Xiu, Strong stability of optimal design to dynamic system for the fed-batch culture, International Journal of Biomathematics, 10 (2017), 1750018, 18pp.
doi: 10.1142/S1793524517500188. |

















Options for ASA selection | Value | Options for ASA termination | Value |
Number of objective function evaluations | Maxi. number of iterations | ||
Max. change for finite-difference gradients | Tolerance on objective function | ||
Min. change for finite-difference gradients | Tolerance of maxi. constraint | ||
Finite difference type | forward | Maxi. number of SQP iterations | |
Tolerance on SQP constraint violation | |||
Options for IPA selection | Value | Options for IPA termination | Value |
Number of objective function evaluations | Maximum number of iterations | ||
Initial barrier value | Tolerance on objective function | ||
Max. change for finite-difference gradients | Tolerance of maxi. constraint | ||
Min. change for finite-difference gradients | Maxi. number of PCG iterations | 2 | |
Finite difference type | forward | Tolerance of PCG algorithm |
Options for ASA selection | Value | Options for ASA termination | Value |
Number of objective function evaluations | Maxi. number of iterations | ||
Max. change for finite-difference gradients | Tolerance on objective function | ||
Min. change for finite-difference gradients | Tolerance of maxi. constraint | ||
Finite difference type | forward | Maxi. number of SQP iterations | |
Tolerance on SQP constraint violation | |||
Options for IPA selection | Value | Options for IPA termination | Value |
Number of objective function evaluations | Maximum number of iterations | ||
Initial barrier value | Tolerance on objective function | ||
Max. change for finite-difference gradients | Tolerance of maxi. constraint | ||
Min. change for finite-difference gradients | Maxi. number of PCG iterations | 2 | |
Finite difference type | forward | Tolerance of PCG algorithm |
Options for ALGA selection | Value | Options for ALGA termination | Value |
Size of population | Maxi. number of iterations | 100 | |
Probability of crossover | Tolerance on fitness function | ||
Probability of mutation | Tolerance of maxi. constraint | ||
Size of elitism | Tolerance of nonlinear constraint | ||
Initial penalty parameter | Max. stall generations | ||
Penalty update parameter | |||
Options for ALPSA selection | Value | Options for ALPSA termination | Value |
Number of objective function evaluations | Maxi. number of iterations | ||
Initial penalty parameter | Tolerance on function value | ||
Penalty update parameter | Min. tolerance for mesh size | ||
Poll method | Tolerance of nonlinear constraint | ||
Search method/Iteration limit | Bind tolerance | ||
Options for ALGA selection | Value | Options for ALGA termination | Value |
Size of population | Maxi. number of iterations | 100 | |
Probability of crossover | Tolerance on fitness function | ||
Probability of mutation | Tolerance of maxi. constraint | ||
Size of elitism | Tolerance of nonlinear constraint | ||
Initial penalty parameter | Max. stall generations | ||
Penalty update parameter | |||
Options for ALPSA selection | Value | Options for ALPSA termination | Value |
Number of objective function evaluations | Maxi. number of iterations | ||
Initial penalty parameter | Tolerance on function value | ||
Penalty update parameter | Min. tolerance for mesh size | ||
Poll method | Tolerance of nonlinear constraint | ||
Search method/Iteration limit | Bind tolerance | ||
ASA | IPA | |||||||||
Iter. | F-count | Max. constr. | Iter. | F-count | Max. constr. | |||||
10 | 0 | 2 | 2.53311 | 0.001187 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 29.1438 | -0.0007862 | 3.86 | 1 | 5 | 3.239829 | 0.4950 | 0.2833 | |
2 | 6 | 16.995 | -0.0002634 | 2.22 | 5 | 16 | 2.558054 | 2.486e-2 | 0.1092 | |
3 | 8 | 12.6526 | -4.356e-5 | 0.531 | 9 | 25 | 5.851129 | 5.661e-3 | 3.331e-2 | |
4 | 10 | 11.9075 | -1.283e-6 | 6.59e-2 | 13 | 33 | 12.04055 | 1.342e-1 | 1.866 | |
5 | 12 | 11.8842 | -1.256e-9 | 2.19e-3 | 17 | 41 | 11.88414 | 3.321e-6 | 3.957e-5 | |
6 | 14 | 11.8841 | -1.225e-15 | 2.37e-6 | 20 | 52 | 11.88414 | 2.196e-13 | 0 | |
20 | 0 | 2 | 2.53311 | 0.002611 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 53.9773 | -0.005372 | 27.4 | 1 | 5 | 3.243753 | 0.4950 | 0.2794 | |
2 | 6 | 29.4623 | -0.00122 | 4.2 | 5 | 16 | 2.574543 | 4.123e-2 | 9.694e-2 | |
3 | 8 | 19.2631 | -2.112e-4 | 1.59 | 9 | 25 | 9.093263 | 2.175e-3 | 1.320e-2 | |
4 | 10 | 16.5631 | -1.48e-5 | 0.184 | 13 | 33 | 16.41998 | 8.452e-2 | 1.516 | |
5 | 12 | 16.343 | -9.832e-8 | 1.55e-2 | 17 | 41 | 16.34150 | 2.417e-6 | 3.959e-5 | |
6 | 14 | 16.3415 | -4.458e-12 | 1.05e-4 | 20 | 52 | 16.34150 | 2.654e-13 | 0 | |
30 | 0 | 2 | 2.53311 | 0.004084 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 78.4373 | -0.01117 | 8.75 | 1 | 5 | 3.247713 | 0.4950 | 0.2754 | |
2 | 6 | 41.7109 | -0.002616 | 5.44 | 5 | 16 | 2.589383 | 5.592e-2 | 8.980e-2 | |
3 | 8 | 25.542 | -5.07e-4 | 2.63 | 9 | 26 | 11.41252 | 3.059 | 8.636 | |
4 | 10 | 20.4244 | -5.079e-5 | 0.486 | 13 | 36 | 21.52822 | 1.733 | 8.5 | |
5 | 12 | 19.7832 | -7.972e-7 | 3.76e-2 | 17 | 44 | 19.77675 | 4.03e-3 | 1.526e-2 | |
6 | 14 | 19.7728 | -2.093e-10 | 6.29e-4 | 20 | 50 | 19.77282 | 2.0e-6 | 3.960e-5 | |
7 | 16 | 19.7728 | -1.789e-17 | 1.92e-7 | 23 | 58 | 19.77282 | 7.136e-9 | 2.069e-14 | |
40 | 0 | 2 | 2.53311 | 0.005573 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 102.773 | -0.01904 | 20.1 | 1 | 5 | 3.251616 | 0.4950 | 0.2715 | |
2 | 6 | 53.8883 | -0.004527 | 5.94 | 5 | 16 | 2.603136 | 6.948e-2 | 8.390e-2 | |
3 | 8 | 31.7156 | -9.314e-4 | 3.55 | 9 | 26 | 13.44820 | 3.121 | 10.49 | |
4 | 10 | 23.9651 | -1.138e-4 | 0.874 | 13 | 36 | 24.51400 | 1.666 | 9.295 | |
5 | 12 | 22.7118 | -2.976e-6 | 6.42e-2 | 17 | 44 | 22.68110 | 4.026e-3 | 1.542e-2 | |
6 | 14 | 22.6772 | -2.266e-9 | 1.87e-3 | 20 | 50 | 22.67716 | 1.754e-6 | 3.960e-5 | |
7 | 16 | 22.6772 | -1.351e-15 | 1.28e-6 | 22 | 54 | 22.67716 | 8.846e-9 | 3.960e-7 |
ASA | IPA | |||||||||
Iter. | F-count | Max. constr. | Iter. | F-count | Max. constr. | |||||
10 | 0 | 2 | 2.53311 | 0.001187 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 29.1438 | -0.0007862 | 3.86 | 1 | 5 | 3.239829 | 0.4950 | 0.2833 | |
2 | 6 | 16.995 | -0.0002634 | 2.22 | 5 | 16 | 2.558054 | 2.486e-2 | 0.1092 | |
3 | 8 | 12.6526 | -4.356e-5 | 0.531 | 9 | 25 | 5.851129 | 5.661e-3 | 3.331e-2 | |
4 | 10 | 11.9075 | -1.283e-6 | 6.59e-2 | 13 | 33 | 12.04055 | 1.342e-1 | 1.866 | |
5 | 12 | 11.8842 | -1.256e-9 | 2.19e-3 | 17 | 41 | 11.88414 | 3.321e-6 | 3.957e-5 | |
6 | 14 | 11.8841 | -1.225e-15 | 2.37e-6 | 20 | 52 | 11.88414 | 2.196e-13 | 0 | |
20 | 0 | 2 | 2.53311 | 0.002611 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 53.9773 | -0.005372 | 27.4 | 1 | 5 | 3.243753 | 0.4950 | 0.2794 | |
2 | 6 | 29.4623 | -0.00122 | 4.2 | 5 | 16 | 2.574543 | 4.123e-2 | 9.694e-2 | |
3 | 8 | 19.2631 | -2.112e-4 | 1.59 | 9 | 25 | 9.093263 | 2.175e-3 | 1.320e-2 | |
4 | 10 | 16.5631 | -1.48e-5 | 0.184 | 13 | 33 | 16.41998 | 8.452e-2 | 1.516 | |
5 | 12 | 16.343 | -9.832e-8 | 1.55e-2 | 17 | 41 | 16.34150 | 2.417e-6 | 3.959e-5 | |
6 | 14 | 16.3415 | -4.458e-12 | 1.05e-4 | 20 | 52 | 16.34150 | 2.654e-13 | 0 | |
30 | 0 | 2 | 2.53311 | 0.004084 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 78.4373 | -0.01117 | 8.75 | 1 | 5 | 3.247713 | 0.4950 | 0.2754 | |
2 | 6 | 41.7109 | -0.002616 | 5.44 | 5 | 16 | 2.589383 | 5.592e-2 | 8.980e-2 | |
3 | 8 | 25.542 | -5.07e-4 | 2.63 | 9 | 26 | 11.41252 | 3.059 | 8.636 | |
4 | 10 | 20.4244 | -5.079e-5 | 0.486 | 13 | 36 | 21.52822 | 1.733 | 8.5 | |
5 | 12 | 19.7832 | -7.972e-7 | 3.76e-2 | 17 | 44 | 19.77675 | 4.03e-3 | 1.526e-2 | |
6 | 14 | 19.7728 | -2.093e-10 | 6.29e-4 | 20 | 50 | 19.77282 | 2.0e-6 | 3.960e-5 | |
7 | 16 | 19.7728 | -1.789e-17 | 1.92e-7 | 23 | 58 | 19.77282 | 7.136e-9 | 2.069e-14 | |
40 | 0 | 2 | 2.53311 | 0.005573 | Infeasible | 0 | 2 | 3.523114 | 0.5000 | Infeasible |
1 | 4 | 102.773 | -0.01904 | 20.1 | 1 | 5 | 3.251616 | 0.4950 | 0.2715 | |
2 | 6 | 53.8883 | -0.004527 | 5.94 | 5 | 16 | 2.603136 | 6.948e-2 | 8.390e-2 | |
3 | 8 | 31.7156 | -9.314e-4 | 3.55 | 9 | 26 | 13.44820 | 3.121 | 10.49 | |
4 | 10 | 23.9651 | -1.138e-4 | 0.874 | 13 | 36 | 24.51400 | 1.666 | 9.295 | |
5 | 12 | 22.7118 | -2.976e-6 | 6.42e-2 | 17 | 44 | 22.68110 | 4.026e-3 | 1.542e-2 | |
6 | 14 | 22.6772 | -2.266e-9 | 1.87e-3 | 20 | 50 | 22.67716 | 1.754e-6 | 3.960e-5 | |
7 | 16 | 22.6772 | -1.351e-15 | 1.28e-6 | 22 | 54 | 22.67716 | 8.846e-9 | 3.960e-7 |
Model( |
CFL no. | Div. step | |||||||
10 | 4.33 | 0.1552 | 1.18 | -0.19 | 49.95 | [-45, 2471] | [-22, 2505] | 108 | |
4.27 | 0.1530 | 1.22 | -0.10 | 51.90 | [-63, 1224] | [-34, 1263] | 182 | ||
4.24 | 0.1522 | 1.23 | -0.06 | 52.67 | [-54,454] | [-37,499] | 331 | ||
4.21 | 0.1507 | 1.26 | 0 | 54.03 | reference | reference | X | ||
4.16 | 0.1492 | 1.28 | 0.07 | 55.43 | [-47, 12] | [-36, 2.2] | X | ||
4.14 | 0.1485 | 1.30 | 0.10 | 56.15 | [-45, 14] | [-39, 4.4] | X | ||
4.08 | 0.1462 | 1.34 | 0.20 | 5C.37 | [-42, 19] | [-40, 8.9] | X | ||
1.68 | 0.0602 | 8.17 | 17.13 | 416.5 | [-30, 32] | [-30, 23] | X | ||
1.05 | 0.0376 | 21.0 | 48.94 | 1089 | [-30, 32] | [-30, 24] | X | ||
20 | 3.15 | 0.1129 | 7.17 | -0.32 | 127.5 | [-44, 2712] | [-18, 2746] | 102 | |
3.11 | 0.1112 | 7.40 | -0.16 | 132.4 | [-47, 1590] | [-30, 1628] | 153 | ||
3.09 | 0.1107 | 7.48 | -0.11 | 134.1 | [-49, 1031] | [-46, 1073] | 210 | ||
3.06 | 0.1096 | 7.64 | 0 | 137.4 | reference | reference | X | ||
3.03 | 0.1085 | 7.79 | 0.11 | 140.8 | [-49, A.7] | [-56, 2.9] | X | ||
3.01 | 0.1080 | 7.88 | 0.16 | 142.5 | [-47, 9.6] | [-32, 5.4] | X | ||
2.97 | 0.1063 | 8.11 | 0.33 | 147.6 | [-44, 14] | [-47, 9] | X | ||
1.22 | 0.0438 | 48.7 | 28.50 | 1017 | [-37, 38] | [-26, 23] | X | ||
0.76 | 0.0274 | 125.0 | 81.31 | 2651 | [-32, 40] | [-41, 22] | X | ||
Model( |
CFL no. | Div. step | |||||||
10 | 4.33 | 0.1552 | 1.18 | -0.19 | 49.95 | [-45, 2471] | [-22, 2505] | 108 | |
4.27 | 0.1530 | 1.22 | -0.10 | 51.90 | [-63, 1224] | [-34, 1263] | 182 | ||
4.24 | 0.1522 | 1.23 | -0.06 | 52.67 | [-54,454] | [-37,499] | 331 | ||
4.21 | 0.1507 | 1.26 | 0 | 54.03 | reference | reference | X | ||
4.16 | 0.1492 | 1.28 | 0.07 | 55.43 | [-47, 12] | [-36, 2.2] | X | ||
4.14 | 0.1485 | 1.30 | 0.10 | 56.15 | [-45, 14] | [-39, 4.4] | X | ||
4.08 | 0.1462 | 1.34 | 0.20 | 5C.37 | [-42, 19] | [-40, 8.9] | X | ||
1.68 | 0.0602 | 8.17 | 17.13 | 416.5 | [-30, 32] | [-30, 23] | X | ||
1.05 | 0.0376 | 21.0 | 48.94 | 1089 | [-30, 32] | [-30, 24] | X | ||
20 | 3.15 | 0.1129 | 7.17 | -0.32 | 127.5 | [-44, 2712] | [-18, 2746] | 102 | |
3.11 | 0.1112 | 7.40 | -0.16 | 132.4 | [-47, 1590] | [-30, 1628] | 153 | ||
3.09 | 0.1107 | 7.48 | -0.11 | 134.1 | [-49, 1031] | [-46, 1073] | 210 | ||
3.06 | 0.1096 | 7.64 | 0 | 137.4 | reference | reference | X | ||
3.03 | 0.1085 | 7.79 | 0.11 | 140.8 | [-49, A.7] | [-56, 2.9] | X | ||
3.01 | 0.1080 | 7.88 | 0.16 | 142.5 | [-47, 9.6] | [-32, 5.4] | X | ||
2.97 | 0.1063 | 8.11 | 0.33 | 147.6 | [-44, 14] | [-47, 9] | X | ||
1.22 | 0.0438 | 48.7 | 28.50 | 1017 | [-37, 38] | [-26, 23] | X | ||
0.76 | 0.0274 | 125.0 | 81.31 | 2651 | [-32, 40] | [-41, 22] | X | ||
Model( |
CFL no. | Div. step | |||||||
30 | 2.61 | 0.0933 | 21.68 | -0.45 | 209.1 | [-46, 2761] | [-20, 2810] | 101 | |
2.57 | 0.0919 | 22.37 | -0.23 | 217.0 | [-49, 1692] | [-47, 1743] | 147 | ||
2.55 | 0.0915 | 22.61 | -0.15 | 219.7 | [-51, 1177] | [-37, 1231] | 190 | ||
2.53 | 0.0905 | 23.07 | 0 | 225.0 | reference | reference | X | ||
2.50 | 0.0897 | 23.55 | 0.15 | 230.5 | [-51, 12] | [-47, 5.1] | X | ||
2.49 | 0.0892 | 23.79 | 0.23 | 233.3 | [-49, 15] | [-51, 7.6] | X | ||
2.46 | 0.0879 | 24.49 | 0.46 | 241.5 | [-47, 22] | [-30, 11] | X | ||
1.01 | 0.0362 | 146.2 | 39.8 | 1644 | [-37, 36] | [-30, 24] | X | ||
0.63 | 0.0226 | 374.9 | 113.7 | 4280 | [-34, 38] | [-33, 24] | X | ||
40 | 2.27 | 0.0814 | 48.41 | -0.58 | 291.9 | [-47, 2792] | [-26, 2850] | 100 | |
2.24 | 0.0801 | 49.94 | -0.29 | 302.9 | [-50, 1735] | [-333, 1796] | 144 | ||
2.23 | 0.0798 | 50.46 | -0.19 | 306.6 | [-52, 1238] | [-34, 1302] | 184 | ||
2.20 | 0.0789 | 51.50 | 0 | 314.1 | reference | reference | X | ||
2.18 | 0.0782 | 52.54 | 0.19 | 321.6 | [-52, 10] | [-52, 2.7] | X | ||
2.17 | 0.0778 | 53.10 | 0.29 | 325.4 | [-50, 14] | [-44, 4.7] | X | ||
2.14 | 0.0766 | 54.67 | 0.59 | 336.9 | [-47, 20] | [-36, 8.3] | X | ||
0.88 | 0.0315 | 325.3 | 51.1 | 2280 | [-36, 37] | [-22, 23] | X | ||
0.55 | 0.0197 | 833.7 | 146.1 | 5932 | [-35, 38] | [-30, 24] | X | ||
Model( |
CFL no. | Div. step | |||||||
30 | 2.61 | 0.0933 | 21.68 | -0.45 | 209.1 | [-46, 2761] | [-20, 2810] | 101 | |
2.57 | 0.0919 | 22.37 | -0.23 | 217.0 | [-49, 1692] | [-47, 1743] | 147 | ||
2.55 | 0.0915 | 22.61 | -0.15 | 219.7 | [-51, 1177] | [-37, 1231] | 190 | ||
2.53 | 0.0905 | 23.07 | 0 | 225.0 | reference | reference | X | ||
2.50 | 0.0897 | 23.55 | 0.15 | 230.5 | [-51, 12] | [-47, 5.1] | X | ||
2.49 | 0.0892 | 23.79 | 0.23 | 233.3 | [-49, 15] | [-51, 7.6] | X | ||
2.46 | 0.0879 | 24.49 | 0.46 | 241.5 | [-47, 22] | [-30, 11] | X | ||
1.01 | 0.0362 | 146.2 | 39.8 | 1644 | [-37, 36] | [-30, 24] | X | ||
0.63 | 0.0226 | 374.9 | 113.7 | 4280 | [-34, 38] | [-33, 24] | X | ||
40 | 2.27 | 0.0814 | 48.41 | -0.58 | 291.9 | [-47, 2792] | [-26, 2850] | 100 | |
2.24 | 0.0801 | 49.94 | -0.29 | 302.9 | [-50, 1735] | [-333, 1796] | 144 | ||
2.23 | 0.0798 | 50.46 | -0.19 | 306.6 | [-52, 1238] | [-34, 1302] | 184 | ||
2.20 | 0.0789 | 51.50 | 0 | 314.1 | reference | reference | X | ||
2.18 | 0.0782 | 52.54 | 0.19 | 321.6 | [-52, 10] | [-52, 2.7] | X | ||
2.17 | 0.0778 | 53.10 | 0.29 | 325.4 | [-50, 14] | [-44, 4.7] | X | ||
2.14 | 0.0766 | 54.67 | 0.59 | 336.9 | [-47, 20] | [-36, 8.3] | X | ||
0.88 | 0.0315 | 325.3 | 51.1 | 2280 | [-36, 37] | [-22, 23] | X | ||
0.55 | 0.0197 | 833.7 | 146.1 | 5932 | [-35, 38] | [-30, 24] | X | ||
10 | 1211.6 | 2414.9 | 2.60175 | 9.83369172 | 0.195963 |
20 | 985.2 | 1964.3 | 3.24926 | 12.28105278 | 0.823283 |
30 | 852.1 | 1699.3 | 3.69751 | 13.97527101 | 0.599417 |
40 | 782.7 | 1561.0 | 4.02499 | 15.21304757 | 0.462573 |
10 | 1211.6 | 2414.9 | 2.60175 | 9.83369172 | 0.195963 |
20 | 985.2 | 1964.3 | 3.24926 | 12.28105278 | 0.823283 |
30 | 852.1 | 1699.3 | 3.69751 | 13.97527101 | 0.599417 |
40 | 782.7 | 1561.0 | 4.02499 | 15.21304757 | 0.462573 |
Mode |
||||||
10 | 9.83369172 | 18.81513016 | 27.66930905 | 33.20317086 | 34.20932756 | 44.79792894 |
20 | 12.28105278 | 22.82830988 | 32.74947408 | 38.42388791 | 40.00837813 | 51.06332472 |
30 | 13.97527101 | 25.11064738 | 35.17371580 | 41.92581303 | 45.15087558 | 53.36012568 |
40 | 15.21304757 | 2A.79312856 | 36.38796514 | 44.14277738 | 48.08409679 | 59.83798712 |
Mode |
||||||
10 | 9.83369172 | 18.81513016 | 27.66930905 | 33.20317086 | 34.20932756 | 44.79792894 |
20 | 12.28105278 | 22.82830988 | 32.74947408 | 38.42388791 | 40.00837813 | 51.06332472 |
30 | 13.97527101 | 25.11064738 | 35.17371580 | 41.92581303 | 45.15087558 | 53.36012568 |
40 | 15.21304757 | 2A.79312856 | 36.38796514 | 44.14277738 | 48.08409679 | 59.83798712 |
ALGA | ALPSA | ||||||||
Gen. | F-count | Max. constr. | Iter. | F-count | Max. constr. | Mesh size | |||
10 | 1 | 1066 | C.28321 | 1.678e-4 | 0 | 1 | 3.79967 | 2.088e-4 | 1 |
3 | 3146 | 2.53318 | 1.187e-3 | 1 | 94 | 5.37203 | 2.596e-4 | 1.074e-3 | |
5 | 5226 | 2.53311 | 1.187e-3 | 2 | 343 | 14.091 | 0 | 3.333e-4 | |
7 | 7306 | 2.53311 | 1.187e-3 | 3 | 451 | 11.8842 | 0 | 3.333e-6 | |
10 | 10516 | 11.8842 |
0 | 4 | 501 | 11.8842 |
0 | 3.333e-8 | |
20 | 1 | 530 | 2.53311 | 2.611e-3 | 0 | 1 | 3.79967 | 2.108e-3 | 1 |
3 | 1570 | 2.53311 | 2.611e-3 | 1 | 61 | 24.7257 | 0 | 3.333e-4 | |
5 | 2610 | 2.53311 | 2.611e-3 | 2 | 262 | 16.3415 | 0 | 3.333e-6 | |
7 | 3668 | 1A.4907 | 0 | 3 | 433 | 16.3415 |
0 | 3.333e-8 | |
10 | 5269 | 16.3415 |
0 | ||||||
30 | 0 | 0 | 2.53311 | Infeasible | 0 | 1 | 2.53311 | 4.084e-3 | 1 |
1 | 1072 | 24.6611 | 0 | 1 | 25 | 43.6032 | 0 | 3.333e-4 | |
2 | 2138 | 19.7728 | 0 | 2 | 266 | 19.7728 | 0 | 3.333e-6 | |
3 | 3190 | 19.7728 |
0 | 3 | 437 | 19.7728 |
0 | 3.333e-8 | |
40 | 0 | 0 | 2.53311 | Infeasible | 0 | 1 | 2.53311 | 5.573e-3 | 1 |
1 | 1072 | 2C.3387 | 0 | 1 | 29 | 48.9484 | 0 | 3.333e-4 | |
2 | 2138 | 22.6772 | 0 | 2 | 258 | 22.6772 | 0 | 3.333e-6 | |
3 | 3190 | 22.6772 |
0 | 3 | 441 | 22.6772 |
0 | 3.333e-8 |
ALGA | ALPSA | ||||||||
Gen. | F-count | Max. constr. | Iter. | F-count | Max. constr. | Mesh size | |||
10 | 1 | 1066 | C.28321 | 1.678e-4 | 0 | 1 | 3.79967 | 2.088e-4 | 1 |
3 | 3146 | 2.53318 | 1.187e-3 | 1 | 94 | 5.37203 | 2.596e-4 | 1.074e-3 | |
5 | 5226 | 2.53311 | 1.187e-3 | 2 | 343 | 14.091 | 0 | 3.333e-4 | |
7 | 7306 | 2.53311 | 1.187e-3 | 3 | 451 | 11.8842 | 0 | 3.333e-6 | |
10 | 10516 | 11.8842 |
0 | 4 | 501 | 11.8842 |
0 | 3.333e-8 | |
20 | 1 | 530 | 2.53311 | 2.611e-3 | 0 | 1 | 3.79967 | 2.108e-3 | 1 |
3 | 1570 | 2.53311 | 2.611e-3 | 1 | 61 | 24.7257 | 0 | 3.333e-4 | |
5 | 2610 | 2.53311 | 2.611e-3 | 2 | 262 | 16.3415 | 0 | 3.333e-6 | |
7 | 3668 | 1A.4907 | 0 | 3 | 433 | 16.3415 |
0 | 3.333e-8 | |
10 | 5269 | 16.3415 |
0 | ||||||
30 | 0 | 0 | 2.53311 | Infeasible | 0 | 1 | 2.53311 | 4.084e-3 | 1 |
1 | 1072 | 24.6611 | 0 | 1 | 25 | 43.6032 | 0 | 3.333e-4 | |
2 | 2138 | 19.7728 | 0 | 2 | 266 | 19.7728 | 0 | 3.333e-6 | |
3 | 3190 | 19.7728 |
0 | 3 | 437 | 19.7728 |
0 | 3.333e-8 | |
40 | 0 | 0 | 2.53311 | Infeasible | 0 | 1 | 2.53311 | 5.573e-3 | 1 |
1 | 1072 | 2C.3387 | 0 | 1 | 29 | 48.9484 | 0 | 3.333e-4 | |
2 | 2138 | 22.6772 | 0 | 2 | 258 | 22.6772 | 0 | 3.333e-6 | |
3 | 3190 | 22.6772 |
0 | 3 | 441 | 22.6772 |
0 | 3.333e-8 |
NLP | ||||||
Method | Algorithm | Para. | ||||
FSDT-MDWDF | ASA | 11.88413667 | 16.34149675 | 19.77282249 | 22.67715857 | |
0.15072042 | 0.10960942 | 0.09058808 | 0.07898617 | |||
CPU time(ms) | 2411.1 | 2425.98 | 2461.76 | 2502.44 | ||
9.83369172 | 12.28105278 | 13.97527101 | 15.21304757 | |||
0.19596347 | 0.82328368 | 0.59941701 | 0.46257394 | |||
IPA | 11.88413707 | 16.34149709 | 19.77282289 | 22.67715898 | ||
0.15072041 | 0.10960942 | 0.09058808 | 0.07898617 | |||
CPU time(ms) | 2265.58 | 1745.8 | 1824.4 | 1972.86 | ||
9.83369205 | 12.28105303 | 13.97527129 | 15.21304784 | |||
0.19596011 | 0.82328166 | 0.59941904 | 0.46257571 | |||
ALGA | 11.88413869 | 16.34149995 | 19.77282581 | 22.67716160 | ||
0.15072040 | 0.10960941 | 0.09058807 | 0.07898617 | |||
CPU time(ms) | 6262.2 | 6137.32 | 4223.16 | 4194.09 | ||
9.83370380 | 12.28105800 | 13.97527405 | 15.21304960 | |||
0.1958408 | 0.82324156 | 0.59943894 | 0.46258734 | |||
ALPSA | 11.88415178 | 16.34150453 | 19.77282756 | 22.67716223 | ||
0.15072013 | 0.10960929 | 0.09058806 | 0.07898616 | |||
CPU time(ms) | 2924.57 | 2781.15 | 2593.6 | 2857.36 | ||
9.83370423 | 12.28105862 | 13.97527458 | 15.21305002 | |||
0.19583654 | 0.82323649 | 0.59944269 | 0.46259008 | |||
FSDT-GRBF [46] | 9.539 | 11.977 | 13.716 | 15.059 | ||
3.18684664 | 3.27868852 | 1.26691621 | 0.55471175 | |||
FSDT-EFG [7] | 9.670 | 12.115 | 13.799 | 15.068 | ||
1.85730234 | 1.00506618 | 0.66945004 | 0.49527834 | |||
FSDT-FEM [36] | 9.841 | 12.138 | 13.864 | 15.107 | ||
0.12179031 | 0.16342539 | 0.20155485 | 0.23773360 | |||
TSDT-EFG [7] | 9.842 | 12.138 | 14.154 | 15.145 | ||
0.11164112 | 0.16342539 | 1.90757270 | 0.01320742 | |||
TSDT-FEM [36] | 9.853 | 12.238 | 13.892 | 15.143 | ||
NLP | ||||||
Method | Algorithm | Para. | ||||
FSDT-MDWDF | ASA | 11.88413667 | 16.34149675 | 19.77282249 | 22.67715857 | |
0.15072042 | 0.10960942 | 0.09058808 | 0.07898617 | |||
CPU time(ms) | 2411.1 | 2425.98 | 2461.76 | 2502.44 | ||
9.83369172 | 12.28105278 | 13.97527101 | 15.21304757 | |||
0.19596347 | 0.82328368 | 0.59941701 | 0.46257394 | |||
IPA | 11.88413707 | 16.34149709 | 19.77282289 | 22.67715898 | ||
0.15072041 | 0.10960942 | 0.09058808 | 0.07898617 | |||
CPU time(ms) | 2265.58 | 1745.8 | 1824.4 | 1972.86 | ||
9.83369205 | 12.28105303 | 13.97527129 | 15.21304784 | |||
0.19596011 | 0.82328166 | 0.59941904 | 0.46257571 | |||
ALGA | 11.88413869 | 16.34149995 | 19.77282581 | 22.67716160 | ||
0.15072040 | 0.10960941 | 0.09058807 | 0.07898617 | |||
CPU time(ms) | 6262.2 | 6137.32 | 4223.16 | 4194.09 | ||
9.83370380 | 12.28105800 | 13.97527405 | 15.21304960 | |||
0.1958408 | 0.82324156 | 0.59943894 | 0.46258734 | |||
ALPSA | 11.88415178 | 16.34150453 | 19.77282756 | 22.67716223 | ||
0.15072013 | 0.10960929 | 0.09058806 | 0.07898616 | |||
CPU time(ms) | 2924.57 | 2781.15 | 2593.6 | 2857.36 | ||
9.83370423 | 12.28105862 | 13.97527458 | 15.21305002 | |||
0.19583654 | 0.82323649 | 0.59944269 | 0.46259008 | |||
FSDT-GRBF [46] | 9.539 | 11.977 | 13.716 | 15.059 | ||
3.18684664 | 3.27868852 | 1.26691621 | 0.55471175 | |||
FSDT-EFG [7] | 9.670 | 12.115 | 13.799 | 15.068 | ||
1.85730234 | 1.00506618 | 0.66945004 | 0.49527834 | |||
FSDT-FEM [36] | 9.841 | 12.138 | 13.864 | 15.107 | ||
0.12179031 | 0.16342539 | 0.20155485 | 0.23773360 | |||
TSDT-EFG [7] | 9.842 | 12.138 | 14.154 | 15.145 | ||
0.11164112 | 0.16342539 | 1.90757270 | 0.01320742 | |||
TSDT-FEM [36] | 9.853 | 12.238 | 13.892 | 15.143 | ||
NLP | ||||||
Method | Algorithm | Para. | ||||
FSDT-MDWDF | ASA | 12.91506498 | 17.80436624 | 21.46965556 | 24.53187819 | |
0.14077503 | 0.10211645 | 0.08468317 | 0.07411249 | |||
9.75894349 | 12.09708139 | 13.65712101 | 14.70474902 | |||
0.35793863 | 0.37405733 | 0.59012307 | 0.41481091 | |||
IPA | 12.91506538 | 17.80436635 | 21.46965596 | 24.53187859 | ||
0.14077502 | 0.10211645 | 0.08468318 | 0.07411249 | |||
9.75894379 | 12.09708146 | 13.65712126 | 14.70474926 | |||
0.35793557 | 0.00374057 | 0.59012491 | 0.41480929 | |||
ALGA | 12.91506688 | 17.80436836 | 21.46965818 | 24.53190153 | ||
0.14077501 | 0.10211643 | 0.08468316 | 0.0741124239 | |||
9.75894493 | 12.09708282 | 13.65712267 | 14.70476301 | |||
0.35792393 | 0.37406920 | 0.59013530 | 0.41471617 | |||
ALPSA | 12.91825286 | 17.81031318 | 21.46968482 | 24.53190155 | ||
0.14074029 | 0.10208235 | 0.08468306 | 0.0741124238 | |||
9.76135232 | 12.10112200 | 13.65713962 | 14.70476302 | |||
0.33334367 | 0.00407583 | 0.00590260 | 0.41471610 | |||
HSDT-FEM [20] | 9.794 | 12.052 | 13.577 | 14.766 | ||
NLP | ||||||
Method | Algorithm | Para. | ||||
FSDT-MDWDF | ASA | 12.91506498 | 17.80436624 | 21.46965556 | 24.53187819 | |
0.14077503 | 0.10211645 | 0.08468317 | 0.07411249 | |||
9.75894349 | 12.09708139 | 13.65712101 | 14.70474902 | |||
0.35793863 | 0.37405733 | 0.59012307 | 0.41481091 | |||
IPA | 12.91506538 | 17.80436635 | 21.46965596 | 24.53187859 | ||
0.14077502 | 0.10211645 | 0.08468318 | 0.07411249 | |||
9.75894379 | 12.09708146 | 13.65712126 | 14.70474926 | |||
0.35793557 | 0.00374057 | 0.59012491 | 0.41480929 | |||
ALGA | 12.91506688 | 17.80436836 | 21.46965818 | 24.53190153 | ||
0.14077501 | 0.10211643 | 0.08468316 | 0.0741124239 | |||
9.75894493 | 12.09708282 | 13.65712267 | 14.70476301 | |||
0.35792393 | 0.37406920 | 0.59013530 | 0.41471617 | |||
ALPSA | 12.91825286 | 17.81031318 | 21.46968482 | 24.53190155 | ||
0.14074029 | 0.10208235 | 0.08468306 | 0.0741124238 | |||
9.76135232 | 12.10112200 | 13.65713962 | 14.70476302 | |||
0.33334367 | 0.00407583 | 0.00590260 | 0.41471610 | |||
HSDT-FEM [20] | 9.794 | 12.052 | 13.577 | 14.766 | ||
NLP | |||||
Algorithm | Para. | ||||
ASA | 11.12198459 | 15.31530671 | 18.56722410 | 21.43934366 | |
0.15957798 | 0.11588562 | 0.09558908 | 0.08375115 | ||
9.53036311 | 11.97168174 | 13.53757952 | 5.46066961 | ||
IPA | 11.12198460 | 15.31530709 | 18.56722348 | 21.32430073 | |
0.15957798 | 0.11588562 | 0.09558908 | 0.08323011 | ||
9.53036311 | 11.97168204 | 13.69778710 | 15.02075228 | ||
ALGA | 11.12198680 | 15.31531111 | 18.56722310 | 21.32430035 | |
0.15957795 | 0.11588559 | 0.09558908 | 0.08323011 | ||
9.53036500 | 11.97168518 | 13.69778682 | 15.02075202 | ||
ALPSA | 11.12199160 | 15.31530987 | 18.56722509 | 21.32430176 | |
0.15957788 | 0.11588560 | 0.09558907 | 0.08323010 | ||
9.53036911 | 11.97168421 | 13.69778829 | 15.02075301 |
NLP | |||||
Algorithm | Para. | ||||
ASA | 11.12198459 | 15.31530671 | 18.56722410 | 21.43934366 | |
0.15957798 | 0.11588562 | 0.09558908 | 0.08375115 | ||
9.53036311 | 11.97168174 | 13.53757952 | 5.46066961 | ||
IPA | 11.12198460 | 15.31530709 | 18.56722348 | 21.32430073 | |
0.15957798 | 0.11588562 | 0.09558908 | 0.08323011 | ||
9.53036311 | 11.97168204 | 13.69778710 | 15.02075228 | ||
ALGA | 11.12198680 | 15.31531111 | 18.56722310 | 21.32430035 | |
0.15957795 | 0.11588559 | 0.09558908 | 0.08323011 | ||
9.53036500 | 11.97168518 | 13.69778682 | 15.02075202 | ||
ALPSA | 11.12199160 | 15.31530987 | 18.56722509 | 21.32430176 | |
0.15957788 | 0.11588560 | 0.09558907 | 0.08323010 | ||
9.53036911 | 11.97168421 | 13.69778829 | 15.02075301 |
[1] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[2] |
Ke Su, Yumeng Lin, Chun Xu. A new adaptive method to nonlinear semi-infinite programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021012 |
[3] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[4] |
Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021017 |
[5] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[6] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[7] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[8] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[9] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[10] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[11] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[12] |
Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025 |
[13] |
Mahdi Karimi, Seyed Jafar Sadjadi. Optimization of a Multi-Item Inventory model for deteriorating items with capacity constraint using dynamic programming. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021013 |
[14] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[15] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[16] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[17] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[18] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
[19] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[20] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]