[1]
|
R. Alemany, C. Bolancé and M. Guillén, A nonparametric approach to calculating value-at-risk, Insurance Math. Econ., 52 (2013), 255-262.
doi: 10.1016/j.insmatheco.2012.12.008.
|
[2]
|
G. Athayde, Building a Mean-Downside Risk Portfolio Frontier, Developments in Forecast Combination and Portfolio Choice, John Wiley and Sons. 2001.
|
[3]
|
G. Athayde, The Mean-downside Risk Portfolio Frontier: A Non-parametric Approach, Published in Advances in portfolio construction and implementation. 2003.
|
[4]
|
A. Berlinet, B. Cadre and A. Gannoun, On the conditional $L_1$
-median and its estimation, J. Nonparametr. Stat., 13 (2001a), 631-645.
doi: 10.1080/10485250108832869.
|
[5]
|
A. Berlinet, A. Gannoun and E. Matzner, Asymptotic normality of convergent estimates of conditional quantiles, Stats., 35 (2001b), 139-169.
doi: 10.1080/02331880108802728.
|
[6]
|
N. Bingham, R. Kiesel and R. Schmidt, A semi-parametric approach to risk management, Quant. Financ., 3 (2003), 426-441.
doi: 10.1088/1469-7688/3/6/302.
|
[7]
|
Z. Cai and X. Wang, Nonparametric estimation of conditional VaR and expected shortfall, J. Econom., 147 (2008), 120-130.
doi: 10.1016/j.jeconom.2008.09.005.
|
[8]
|
S. Chen and C. Y. Tang, Nonparametric inference of value-atrisk for dependent financial returns, J. Financ. Econ., 3 (2005), 227-255.
|
[9]
|
S. Chen, Nonparametric estimation of expected shortfall, J. Financ. Econ., 6 (2008), 87-107.
doi: 10.1093/jjfinec/nbm019.
|
[10]
|
L. Chiodi, R. Mansini and M. G. Speranza, Semi-absolute deviation rule for mutual funds portfolio selection, Ann. Oper. Res., 124 (2003), 245-265.
doi: 10.1023/B:ANOR.0000004772.15447.5a.
|
[11]
|
T. E. Conine and and M. J. Tamarkin, On diversiffication given asymmetry in returns, J. Financ., 36 (1981), 1143-1155.
|
[12]
|
Z. Dai and F. Wen, Some improved sparse and stable portfolio optimization problems, Finan. Res. Lett., 27 (2018), 46-52.
doi: 10.1016/j.frl.2018.02.026.
|
[13]
|
Z. Dai and F. Wen, A generalized approach to sparse and stable portfolio optimization problem, J. Ind. Manag. Optim., 14 (2018), 1651-1666.
|
[14]
|
Z. Dai and F. Wang, Sparse and robust mean-variance portfolio optimization problems., Physica A, 2019, accepted.
|
[15]
|
A. Gannoun, J. Saracco and K. Yu, Nonparametric time series prediction by conditional median and quantiles, J. stat. Plan. inferenc., 117 (2003), 207-223.
doi: 10.1016/S0378-3758(02)00384-1.
|
[16]
|
J. G. Gooijer and A. Gannoun, Tr multivariate conditional median estimation, Commun. Stat. Simul. C., 36 (2007), 165-176.
doi: 10.1080/03610910601096270.
|
[17]
|
B. E. Hansen, Bandwidth selection for nonparametric distribution estimation., Working Paper, 2004.
|
[18]
|
Z. He, L. He and F. Wen, Risk compensation and market returns: The role of investor sentiment in the stock market, Emerg. Mark. Financ. Tr., 55 (2019), 704-718.
|
[19]
|
C. Huang, Z. Yang, T. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, J. Differential Equations, 256 (2014), 2101-2114.
doi: 10.1016/j.jde.2013.12.015.
|
[20]
|
S. O. Jeong and K. H. Kang, Nonparametric estimation of valueat-risk, J. Appl. Stat., 36 (2009), 1225-1238.
doi: 10.1080/02664760802607517.
|
[21]
|
P. Jorion, Value at Risk: The New Benchmark for controlling Derivatives Risk, New York: McGraw-Hill. 1997.
|
[22]
|
H. Kellerer, R. Mansini and M. G. Speranza, Selecting portfolios with fixed costs and minimum transaction lots, Ann. Oper. Res., 99 (2000), 287-304.
doi: 10.1023/A:1019279918596.
|
[23]
|
R. Koenker, Quantile Regression, Cambridge Books, Cambridge University Press, Issue. 38, 2005.
doi: 10.1017/CBO9780511754098.
|
[24]
|
H. Konno and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Manage. Sci., 37 (1991), 501-623.
doi: 10.1287/mnsc.37.5.519.
|
[25]
|
Q. Li and J. S. Racine, Nonparametric Econometrics: Theory and Practice, Princeton University Press, 2007.
|
[26]
|
R. Mansini, W. Ogryczak and M. G. Speranza, LP solvable models for portfolio optimization: A classification and computational comparison, IMA J. Manag. Math., 14 (2003), 187-220.
doi: 10.1093/imaman/14.3.187.
|
[27]
|
H. Markowitz, Portfolio Selection, J. Financ., 7 (1952), 77-91.
|
[28]
|
A. R. Pagan and A. Ullah, Nonparametric Econometrics, Cambridge University Press. 1999.
doi: 10.1017/CBO9780511612503.
|
[29]
|
C. Papahristodoulou and E. Dotzauer, Optimal portfolios using linear programming models, J. Oper. Res. Soc., 55 (2004), 1169-1177.
doi: 10.1057/palgrave.jors.2601765.
|
[30]
|
J. S. Pang, A new efficient algorithm for a class of portfolio selection problems, Oper. Res., 28 (1980), 754-767.
doi: 10.1287/opre.28.3.754.
|
[31]
|
A. Perold, Large scale portfolio selections, Manage. Sci., 30 (1984), 1143-1160.
doi: 10.1287/mnsc.30.10.1143.
|
[32]
|
T. Rockfeller and S. Uryasev, Optimization of conditional value-at-risk, J. Risk., 2 (2000), 21-34.
doi: 10.21314/JOR.2000.038.
|
[33]
|
H. B. Salah, M. Chaouch, A. Gannoun, C. D. Peretti and A. Trabelsi, Mean and median-based nonparametric estimation of returns in mean-downside risk portfolio frontier, Ann. Oper. Res., 262 (2018), 653-681.
doi: 10.1007/s10479-016-2235-z.
|
[34]
|
O. Scaillet, Nonparametric estimation and sensitivity analysis of expected shortfall, Math. Financ., 14 (2004), 115-129.
doi: 10.1111/j.0960-1627.2004.00184.x.
|
[35]
|
W. F. Sharpe, Capital asset prices: A theory of market equilibrium under conditions of risk, J. Financ., 19 (1964), 425-442.
|
[36]
|
P. Shen, Median regression model with left truncated and right censored data, J. Stat. Plan. Infer., 142 (2012), 1757-1766.
doi: 10.1016/j.jspi.2012.02.014.
|
[37]
|
B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York. 1986.
doi: 10.1007/978-1-4899-3324-9.
|
[38]
|
J. Schaumburg, Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory, Comput. Stat. Data Anal., 56 (2012), 4081-4096.
doi: 10.1016/j.csda.2012.03.016.
|
[39]
|
S. Subramanian, Median regression using nonparametric kernel estimation, J. Nonparametr. Stat., 14 (2002), 583-605.
doi: 10.1080/10485250213907.
|
[40]
|
S. Subramanian, Median regression analysis from data with left and right censored observations, Stat. Methodol., 4 (2007), 121-131.
doi: 10.1016/j.stamet.2006.03.001.
|
[41]
|
M. G. Speranza, Linear programming models for portfolio optimization, Finance., 14 (1993), 107-123.
|
[42]
|
M. G. Speranza, A heuristic algorithm for a portfolio optimization model applied to the Milan stock market, Comput. Oper. Res., 23 (1996), 433-441.
doi: 10.1016/0305-0548(95)00030-5.
|
[43]
|
F. Wen, J. Xiao, C. Huang and X. Xia, Interaction between oil and US dollar exchange rate: Nonlinear causality, time-varying influence and structural breaks in volatility, Appl. Econ., 50 (2018), 319-334.
doi: 10.1080/00036846.2017.1321838.
|
[44]
|
F. Wen, F. Min and Y. J. Zhang et al., Crude oil price shocks, monetary policy, and China's economy, Int. J. Financ. Econ., (2018) online.
doi: 10.1002/ijfe.1692.
|
[45]
|
F. Wen, X. Yang and W. Zhou, Tail dependence networks of global stock markets, Int. J. Financ. Econ., 24 (2019), 558-567.
doi: 10.1002/ijfe.1679.
|
[46]
|
F. Wen, J. Xiao and X. Xia et al., Oil prices and chinese stock market: Nonlinear causality and volatility persistence, Emerg. Mark. Financ. Tr., 55 (2019), 1247-1263.
doi: 10.1080/1540496X.2018.1496078.
|
[47]
|
J. Xiao, M. Zhou and F. Wen et al., Asymmetric impacts of oil price uncertainty on Chinese stock returns under different market conditions: Evidence from oil volatility index, Energ. Econ., 74 (2018), 777-786.
doi: 10.1016/j.eneco.2018.07.026.
|
[48]
|
H. Yao, Z. Li and Y. Lai, Mean-CVaR portfolio selection: A nonparametric estimation framework, Comput. Oper. Res., 40 (2013), 1014-1022.
doi: 10.1016/j.cor.2012.11.007.
|
[49]
|
H. Yao, Y. Li and K. Benson, A smooth non-parametric estimation framework for safety-first portfolio optimization, Quant. Financ., 15 (2015), 1865-1884.
doi: 10.1080/14697688.2014.971857.
|
[50]
|
K. Yu, A. Allay, S. Yang and D. J. Hand, Kernel quantile based estimation of expected shortfall, J. Risk., 12 (2010), 15-32.
|
[51]
|
G. Yuan, Z. H. Meng and Y. Li, A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations, J. Optim. Theory. Appl., 168 (2016), 129-152.
|
[52]
|
G. Zhao and Y. Y. Ma, Robust nonparametric kernel regression estimator, Stat. Probabil. Lett., 116 (2016), 72-79.
doi: 10.1016/j.spl.2016.04.010.
|
[53]
|
Y. Zhao and F. Chen, Empirical likelihood inference for censored median regression model via nonparametric kernel estimation, J. Multivariate Anal., 99 (2008), 215-231.
doi: 10.1016/j.jmva.2007.05.002.
|
[54]
|
Y. Zhao and H. Cui, Empirical likelihood for median regression model with designed censoring variables, J. Multivariate Anal., 101 (2010), 240-251.
doi: 10.1016/j.jmva.2009.07.008.
|