September  2020, 16(5): 2351-2367. doi: 10.3934/jimo.2019057

A new concave reformulation and its application in solving DC programming globally under uncertain environment

School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433, China

* Corresponding author: Yanjun Wang

Received  July 2018 Revised  January 2019 Published  May 2019

Fund Project: We gratefully acknowledge the valuable cooperation of Prof. R. Tyrrell Rockafellar(University of Washington). This research was supported by NSFC (11271243)

In this paper, a new concave reformulation is proposed on a convex hull of some given points. Based on its properties, we attempt to solve DC Programming problems globally under uncertain environment by using Robust optimization method and CVaR method. A global optimization algorithm is developed for the Robust counterpart and CVaR model with two kinds of special convex hulls: simplex set and box set. The global solution is obtained by solving a sequence of convex relaxation programming on the original constraint sets or divided subsets with branch and bound method. Finally, numerical experiments are given for DC programs under uncertain environment with two kinds of constraints: simplex and box sets. Simulation results show the feasibility and efficiency of the proposed global optimization algorithm.

Citation: Yanjun Wang, Kaiji Shen. A new concave reformulation and its application in solving DC programming globally under uncertain environment. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2351-2367. doi: 10.3934/jimo.2019057
References:
[1]

A. Ben-Tal and A. Nemirovski, Robust convex optimization, Mathematics of Operations Research, 23 (1998), 769-805.  doi: 10.1287/moor.23.4.769.  Google Scholar

[2]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Operations research letters, 25 (1999), 1-13.  doi: 10.1016/S0167-6377(99)00016-4.  Google Scholar

[3]

A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data, Mathematical Programming, 88 (2000), 411-424.  doi: 10.1007/PL00011380.  Google Scholar

[4]

T. P. Dinh, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Annals of Operations Research, 113 (2005), 23-46.  doi: 10.1007/s10479-004-5022-1.  Google Scholar

[5]

T. P. Dinh and A. Le Thi Hoai, A DC optimization algorithm for solving the trust-region subproblem, SIAM J. Optim., 8 (1998), 476-505.  doi: 10.1137/S1052623494274313.  Google Scholar

[6]

A. Edward, H. F. Xu and D. L. Zhang, Confidence levels for cvar risk measures and minimax limits, Business Analytics, 2014. Google Scholar

[7]

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Second edition. Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02947-3.  Google Scholar

[8]

C. D. Maranas and C. A. Floudas, Global optimization in generalized geometric programming, Computers & Chemical Engineering, 21 (1997), 351-369.   Google Scholar

[9]

G. C. Pflug, Some remarks on the value-at-risk and the conditional value-at-risk, Probabilistic constrained optimization, 8 (2000), 272-281.  doi: 10.1007/978-1-4757-3150-7_15.  Google Scholar

[10]

H. Reiner and T. Nguyen V, Robust solutions of linear programming problems contaminated with uncertain data, Journal of Optimization Theory and Applications, 103 (1999), 1-43.   Google Scholar

[11] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.   Google Scholar
[12]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.  doi: 10.21314/JOR.2000.038.  Google Scholar

[13]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, 26 (2002), 1443-1471.   Google Scholar

[14]

R. T. Rockafellar, Coherent approaches to risk in optimization under uncertainty, OR Tools and Applications: Glimpses of Future Technologies, 8 (2007), 38-61.  doi: 10.1287/educ.1073.0032.  Google Scholar

[15]

P. P. Shen and C. F. Wang, Global optimization for sum of linear ratios problem with coefficients, Applied Mathematics and Computation, 176 (2006), 219-229.  doi: 10.1016/j.amc.2005.09.047.  Google Scholar

[16]

Y. J. Wang and Y. Lan, Global optimization for special reverse convex programming, Computers & Mathematics with Applications, 55 (2008), 1154-1163.  doi: 10.1016/j.camwa.2007.04.046.  Google Scholar

show all references

References:
[1]

A. Ben-Tal and A. Nemirovski, Robust convex optimization, Mathematics of Operations Research, 23 (1998), 769-805.  doi: 10.1287/moor.23.4.769.  Google Scholar

[2]

A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Operations research letters, 25 (1999), 1-13.  doi: 10.1016/S0167-6377(99)00016-4.  Google Scholar

[3]

A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contaminated with uncertain data, Mathematical Programming, 88 (2000), 411-424.  doi: 10.1007/PL00011380.  Google Scholar

[4]

T. P. Dinh, The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems, Annals of Operations Research, 113 (2005), 23-46.  doi: 10.1007/s10479-004-5022-1.  Google Scholar

[5]

T. P. Dinh and A. Le Thi Hoai, A DC optimization algorithm for solving the trust-region subproblem, SIAM J. Optim., 8 (1998), 476-505.  doi: 10.1137/S1052623494274313.  Google Scholar

[6]

A. Edward, H. F. Xu and D. L. Zhang, Confidence levels for cvar risk measures and minimax limits, Business Analytics, 2014. Google Scholar

[7]

R. Horst and H. Tuy, Global Optimization: Deterministic Approaches, Second edition. Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02947-3.  Google Scholar

[8]

C. D. Maranas and C. A. Floudas, Global optimization in generalized geometric programming, Computers & Chemical Engineering, 21 (1997), 351-369.   Google Scholar

[9]

G. C. Pflug, Some remarks on the value-at-risk and the conditional value-at-risk, Probabilistic constrained optimization, 8 (2000), 272-281.  doi: 10.1007/978-1-4757-3150-7_15.  Google Scholar

[10]

H. Reiner and T. Nguyen V, Robust solutions of linear programming problems contaminated with uncertain data, Journal of Optimization Theory and Applications, 103 (1999), 1-43.   Google Scholar

[11] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970.   Google Scholar
[12]

R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal of Risk, 2 (2000), 21-41.  doi: 10.21314/JOR.2000.038.  Google Scholar

[13]

R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distributions, Journal of Banking & Finance, 26 (2002), 1443-1471.   Google Scholar

[14]

R. T. Rockafellar, Coherent approaches to risk in optimization under uncertainty, OR Tools and Applications: Glimpses of Future Technologies, 8 (2007), 38-61.  doi: 10.1287/educ.1073.0032.  Google Scholar

[15]

P. P. Shen and C. F. Wang, Global optimization for sum of linear ratios problem with coefficients, Applied Mathematics and Computation, 176 (2006), 219-229.  doi: 10.1016/j.amc.2005.09.047.  Google Scholar

[16]

Y. J. Wang and Y. Lan, Global optimization for special reverse convex programming, Computers & Mathematics with Applications, 55 (2008), 1154-1163.  doi: 10.1016/j.camwa.2007.04.046.  Google Scholar

Figure 1.  h(x,ω0) and l(x,ω0) in box case
Figure 2.  h(x,ω0) and l(x,ω0) in simplex case
Figure 3.  Optimal value comparison of Robust Model and CVaR model
Table 1.   
α CPU(s) Step Nodes Opt Solution Opt Value Opt*
0.70 356.11 87 69 (0.0000, 1.1250, 1.8750)T -2.2690 -2.2689
0.75 956.11 163 101 (0.0000, 1.0547, 1.5703)T -2.1214 -2.1214
0.80 847.73 163 106 (0.0000, 0.7969, 1.1191)T -1.9628 -1.9628
0.85 516.92 132 106 (0.0000, 0.6211, 0.8789)T -1.7508 -1.7508
0.90 518.31 122 107 (0.0000, 0.4569, 0.6797)T -1.5661 -1.5663
0.95 321.43 78 68 (0.0000, 0.3580, 0.5326)T -1.4453 -1.4452
0.97 143.17 31 27 (0.0000, 0.3387, 0.5038)T -1.4228 -1.4228
0.98 160.39 30 24 (0.0104, 0.3437, 0.5156)T -1.4222 -1.4222
0.99 167.81 31 26 (0.0023, 0.3281, 0.5000)T -1.4221 -1.4221
Robust 218.18 52 51 (0.0080, 0.3515, 0.5002)T -1.4221 -1.4221
α CPU(s) Step Nodes Opt Solution Opt Value Opt*
0.70 356.11 87 69 (0.0000, 1.1250, 1.8750)T -2.2690 -2.2689
0.75 956.11 163 101 (0.0000, 1.0547, 1.5703)T -2.1214 -2.1214
0.80 847.73 163 106 (0.0000, 0.7969, 1.1191)T -1.9628 -1.9628
0.85 516.92 132 106 (0.0000, 0.6211, 0.8789)T -1.7508 -1.7508
0.90 518.31 122 107 (0.0000, 0.4569, 0.6797)T -1.5661 -1.5663
0.95 321.43 78 68 (0.0000, 0.3580, 0.5326)T -1.4453 -1.4452
0.97 143.17 31 27 (0.0000, 0.3387, 0.5038)T -1.4228 -1.4228
0.98 160.39 30 24 (0.0104, 0.3437, 0.5156)T -1.4222 -1.4222
0.99 167.81 31 26 (0.0023, 0.3281, 0.5000)T -1.4221 -1.4221
Robust 218.18 52 51 (0.0080, 0.3515, 0.5002)T -1.4221 -1.4221
Table 2.   
α CPU(s) Step Nodes Opt Solution Opt Value Opt*
0.70 264.90 24 22 (0.0000, 0.6719, 0.9844)T -2.2410 -2.2410
0.75 105.19 25 29 (0.0000, 0.6641, 0.9844)T -2.1214 -2.1215
0.80 217.65 24 19 (0.0000, 0.7187, 0.9844)T -1.9520 -1.9520
0.85 516.92 55 40 (0.0000, 0.6250, 0.8750)T -1.7506 -1.7505
0.90 350.26 39 34 (0.0000, 0.4531, 0.6741)T -1.5661 -1.5661
0.95 208.85 38 32 (0.0000, 0.3580, 0.5326)T -1.4452 -1.4452
0.97 143.17 31 27 (0.0000, 0.3437, 0.5156)T -1.4228 -1.4228
0.98 167.81 30 26 (0.0104, 0.3437, 0.5156)T -1.4222 -1.4222
0.99 160.39 31 24 (0.0023, 0.3281, 0.5000)T -1.4221 -1.4221
Robust 216.98 35 27 (0.0080, 0.3515, 0.5002)T -1.4221 -1.4221
α CPU(s) Step Nodes Opt Solution Opt Value Opt*
0.70 264.90 24 22 (0.0000, 0.6719, 0.9844)T -2.2410 -2.2410
0.75 105.19 25 29 (0.0000, 0.6641, 0.9844)T -2.1214 -2.1215
0.80 217.65 24 19 (0.0000, 0.7187, 0.9844)T -1.9520 -1.9520
0.85 516.92 55 40 (0.0000, 0.6250, 0.8750)T -1.7506 -1.7505
0.90 350.26 39 34 (0.0000, 0.4531, 0.6741)T -1.5661 -1.5661
0.95 208.85 38 32 (0.0000, 0.3580, 0.5326)T -1.4452 -1.4452
0.97 143.17 31 27 (0.0000, 0.3437, 0.5156)T -1.4228 -1.4228
0.98 167.81 30 26 (0.0104, 0.3437, 0.5156)T -1.4222 -1.4222
0.99 160.39 31 24 (0.0023, 0.3281, 0.5000)T -1.4221 -1.4221
Robust 216.98 35 27 (0.0080, 0.3515, 0.5002)T -1.4221 -1.4221
Table 3.  Simplex feasible
CPU Time(s) Nodes SEED
RDC 91 11 1
Floudas 227 42 1
RDC 100 15 2
Floudas 204 40 2
RDC 120 25 3
Floudas 280 75 3
CPU Time(s) Nodes SEED
RDC 91 11 1
Floudas 227 42 1
RDC 100 15 2
Floudas 204 40 2
RDC 120 25 3
Floudas 280 75 3
Table 4.  Box feasible
CPU Time(s) Nodes SEED
RDC 88 8 1
Floudas 220 40 1
RDC 105 12 2
Floudas 207 36 2
RDC 117 20 3
Floudas 281 68 3
CPU Time(s) Nodes SEED
RDC 88 8 1
Floudas 220 40 1
RDC 105 12 2
Floudas 207 36 2
RDC 117 20 3
Floudas 281 68 3
[1]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[2]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[3]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[4]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[5]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[6]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[10]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[11]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[12]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[13]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[17]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[18]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[19]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[20]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (99)
  • HTML views (552)
  • Cited by (0)

Other articles
by authors

[Back to Top]