
-
Previous Article
Inverse quadratic programming problem with $ l_1 $ norm measure
- JIMO Home
- This Issue
-
Next Article
A dynamic lot sizing model with production-or-outsourcing decision under minimum production quantities
Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service
1. | School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China |
2. | Department of Intelligence and Informatics, Konan University, Kobe 658-8501, Japan |
3. | Graduate School of Informatics, Kyoto University, Kyoto 606-8225, Japan |
Cloud computing makes it possible for application providers to provide services seamlessly and application users to receive services adaptively. By offering services that give users an initial experience, application providers can usually attract more users. This research proposes a type of sleeping mechanism-based cloud architecture where an experience service and an enrollment service are provided on one virtual machine (VM). Accordingly, we model the cloud architecture as a queue with an asynchronous multi-vacation and a selectable extra service. We also analyze the queueing model in the steady state by constructing a three-dimensional Markov chain. Following this, we evaluate the system performance of the proposed cloud architecture based on the energy conservation level of the system and the mean delay of the visitors who select the enrollment service. Moreover, we study the Nash equilibrium strategy of visitors by building an individual welfare function, and develop an improved intelligent search algorithm to investigate the socially optimal strategy of visitors. Aiming to achieve a social optimum, we formulate a pricing policy with a reasonable enrollment fee.
References:
[1] |
S. Ahn, J. Lee, S. Park, S. Newaz and J. Choi,
Competitive partial computation offloading for maximizing energy efficiency in mobile cloud computing, IEEE Access, 6 (2018), 899-912.
doi: 10.1109/ACCESS.2017.2776323. |
[2] |
R. Buyya, A. Beloglazov and J. Abawajy, Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges, Eprint arXiv, 12 (2010), 6-17. Google Scholar |
[3] |
R. Dhanwate and V. Bhagat, Improving energy efficiency on android using cloud based services, International Journal of Advance Research in Computer Science and Management Studies, 3 (2015), 75-79. Google Scholar |
[4] |
B. Doshi,
Queueing systems with vacations–-A survey, Queueing Systems, 1 (1986), 29-66.
doi: 10.1007/BF01149327. |
[5] |
W. Gary, P. Wang and M. Scott,
A vacation queueing model with service breakdowns, Applied Mathematical Modelling, 24 (2000), 391-400.
doi: 10.1016/S0307-904X(99)00048-7. |
[6] |
M. Ghorbani-Mandolakani and M. Rad,
ML and Bayes estimation in a Two-Phase tandem queue with a second optional service and random feedback, Communications in Statistics-Theory and Methods, 45 (2016), 2576-2591.
doi: 10.1080/03610926.2014.887107. |
[7] | Z. Gui, J. Xia, N. Zhou and Q. Huang, How to Choose Cloud Services: Toward a Cloud Computing Cost Model, CRC Press, 2013. Google Scholar |
[8] |
Z. Guo, M. Song and Q. Wang, Policy-based market-oriented cloud service management architecture, Proc. of the International Conference on Information and Management Engineering, Wuhan, China, (2011), 284–291.
doi: 10.1007/978-3-642-24010-2_39. |
[9] |
J. Hu, J. Deng and J. Wu,
A green private cloud architecture with global collaboration, Telecommunication Systems, 52 (2013), 1269-1279.
doi: 10.1007/s11235-011-9639-5. |
[10] |
S. Hussein, Y. Alkabani and H. Mohamed, Green cloud computing: Datacenters power management policies and algorithms, Proc. of the 9th IEEE International Conference on Computer Engineering and Systems, Cairo, Egypt, (2015), 421–426.
doi: 10.1109/ICCES.2014.7030998. |
[11] |
A. Jain and M. Jain,
Multi-server machine repair problem with unreliable server and two types of spares under asynchronous vacation policy, International Journal of Mathematics in Operational Research, 10 (2017), 286-315.
doi: 10.1504/IJMOR.2017.083187. |
[12] |
S. Jin, H. Wu and W. Yue,
Pricing policy for a cloud registration service with a novel cloud architecture, Cluster Computing, 22 (2019), 271-283.
doi: 10.1007/s10586-018-2854-z. |
[13] |
S. Jin, X. Ma and W. Yue, Energy-saving strategy for green cognitive radio networks with an LTE-advanced structure, Journal of Communications and Networks, 18 (2016), 610-618. Google Scholar |
[14] |
Z. Ma, P. Wang and W. Yue,
Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with $N$-policy, setup time and multiple working vacations, Journal of Industrial and Management Optimization, 13 (2017), 1467-1481.
doi: 10.3934/jimo.2017002. |
[15] |
K. Madan,
An M/G/1 queue with second optional service, Queueing Systems, 34 (2000), 37-46.
doi: 10.1023/A:1019144716929. |
[16] |
M. Neuts, Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins University Press, 1981.
![]() |
[17] |
P. Shi, H. Wang, X. Yue, S. Yang, X. Fu and Y. Peng, Corporation architecture for multiple cloud service providers in jointcloud computing, Proc. of the 37th International Conference on Distributed Computing Systems Workshops, Atlanta, USA, (2017), 294–298.
doi: 10.1109/ICDCSW.2017.9. |
[18] |
C. Singh, M. Jain and B. Kumar,
Queueing model with state-dependent bulk arrival and second optional service, International Journal of Mathematics in Operational Research, 3 (2011), 322-340.
doi: 10.1504/IJMOR.2011.040029. |
[19] |
A. Tarabia,
Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs, Journal of Communications and Networks, 7 (2017), 811-823.
doi: 10.3934/jimo.2011.7.811. |
[20] |
C. Wei, L. Cai and J. Wang,
A discrete-time Geom/G/1 retrial queue with balking customers and second optional service, Opsearch, 53 (2016), 344-357.
doi: 10.1007/s12597-015-0232-7. |
[21] |
H. Wu, S. Jin, W. Yue and Y. Takahashi, Performance evaluation for a registration service with an energy efficient cloud architecture, Proc. of the International Conference on Queueing Theory and Network Applications, Tsukuba City, Japan, (2018), 133–141.
doi: 10.1007/978-3-319-93736-6_10. |
[22] |
K. Ye, D. Huang, X. Jiang, H. Chen and S. Wu, Virtual machine based energy-efficient data center architecture for cloud computing: A performance perspective, Proc. of the IEEE/ACM International Conference on Green Computing and Communications, Hangzhou, China, (2010), 171–178.
doi: 10.1109/GreenCom-CPSCom.2010.108. |
show all references
References:
[1] |
S. Ahn, J. Lee, S. Park, S. Newaz and J. Choi,
Competitive partial computation offloading for maximizing energy efficiency in mobile cloud computing, IEEE Access, 6 (2018), 899-912.
doi: 10.1109/ACCESS.2017.2776323. |
[2] |
R. Buyya, A. Beloglazov and J. Abawajy, Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges, Eprint arXiv, 12 (2010), 6-17. Google Scholar |
[3] |
R. Dhanwate and V. Bhagat, Improving energy efficiency on android using cloud based services, International Journal of Advance Research in Computer Science and Management Studies, 3 (2015), 75-79. Google Scholar |
[4] |
B. Doshi,
Queueing systems with vacations–-A survey, Queueing Systems, 1 (1986), 29-66.
doi: 10.1007/BF01149327. |
[5] |
W. Gary, P. Wang and M. Scott,
A vacation queueing model with service breakdowns, Applied Mathematical Modelling, 24 (2000), 391-400.
doi: 10.1016/S0307-904X(99)00048-7. |
[6] |
M. Ghorbani-Mandolakani and M. Rad,
ML and Bayes estimation in a Two-Phase tandem queue with a second optional service and random feedback, Communications in Statistics-Theory and Methods, 45 (2016), 2576-2591.
doi: 10.1080/03610926.2014.887107. |
[7] | Z. Gui, J. Xia, N. Zhou and Q. Huang, How to Choose Cloud Services: Toward a Cloud Computing Cost Model, CRC Press, 2013. Google Scholar |
[8] |
Z. Guo, M. Song and Q. Wang, Policy-based market-oriented cloud service management architecture, Proc. of the International Conference on Information and Management Engineering, Wuhan, China, (2011), 284–291.
doi: 10.1007/978-3-642-24010-2_39. |
[9] |
J. Hu, J. Deng and J. Wu,
A green private cloud architecture with global collaboration, Telecommunication Systems, 52 (2013), 1269-1279.
doi: 10.1007/s11235-011-9639-5. |
[10] |
S. Hussein, Y. Alkabani and H. Mohamed, Green cloud computing: Datacenters power management policies and algorithms, Proc. of the 9th IEEE International Conference on Computer Engineering and Systems, Cairo, Egypt, (2015), 421–426.
doi: 10.1109/ICCES.2014.7030998. |
[11] |
A. Jain and M. Jain,
Multi-server machine repair problem with unreliable server and two types of spares under asynchronous vacation policy, International Journal of Mathematics in Operational Research, 10 (2017), 286-315.
doi: 10.1504/IJMOR.2017.083187. |
[12] |
S. Jin, H. Wu and W. Yue,
Pricing policy for a cloud registration service with a novel cloud architecture, Cluster Computing, 22 (2019), 271-283.
doi: 10.1007/s10586-018-2854-z. |
[13] |
S. Jin, X. Ma and W. Yue, Energy-saving strategy for green cognitive radio networks with an LTE-advanced structure, Journal of Communications and Networks, 18 (2016), 610-618. Google Scholar |
[14] |
Z. Ma, P. Wang and W. Yue,
Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with $N$-policy, setup time and multiple working vacations, Journal of Industrial and Management Optimization, 13 (2017), 1467-1481.
doi: 10.3934/jimo.2017002. |
[15] |
K. Madan,
An M/G/1 queue with second optional service, Queueing Systems, 34 (2000), 37-46.
doi: 10.1023/A:1019144716929. |
[16] |
M. Neuts, Matrix-Geometric Solutions in Stochastic Models, Johns Hopkins University Press, 1981.
![]() |
[17] |
P. Shi, H. Wang, X. Yue, S. Yang, X. Fu and Y. Peng, Corporation architecture for multiple cloud service providers in jointcloud computing, Proc. of the 37th International Conference on Distributed Computing Systems Workshops, Atlanta, USA, (2017), 294–298.
doi: 10.1109/ICDCSW.2017.9. |
[18] |
C. Singh, M. Jain and B. Kumar,
Queueing model with state-dependent bulk arrival and second optional service, International Journal of Mathematics in Operational Research, 3 (2011), 322-340.
doi: 10.1504/IJMOR.2011.040029. |
[19] |
A. Tarabia,
Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs, Journal of Communications and Networks, 7 (2017), 811-823.
doi: 10.3934/jimo.2011.7.811. |
[20] |
C. Wei, L. Cai and J. Wang,
A discrete-time Geom/G/1 retrial queue with balking customers and second optional service, Opsearch, 53 (2016), 344-357.
doi: 10.1007/s12597-015-0232-7. |
[21] |
H. Wu, S. Jin, W. Yue and Y. Takahashi, Performance evaluation for a registration service with an energy efficient cloud architecture, Proc. of the International Conference on Queueing Theory and Network Applications, Tsukuba City, Japan, (2018), 133–141.
doi: 10.1007/978-3-319-93736-6_10. |
[22] |
K. Ye, D. Huang, X. Jiang, H. Chen and S. Wu, Virtual machine based energy-efficient data center architecture for cloud computing: A performance perspective, Proc. of the IEEE/ACM International Conference on Green Computing and Communications, Hangzhou, China, (2010), 171–178.
doi: 10.1109/GreenCom-CPSCom.2010.108. |





Step 1: Setting the error precision |
|
|
Step 2: Tackle |
and |
|
|
|
Step 3: Calculate |
Step 4: While{ |
% |
%elements in |
|
|
Step 5: |
Step 6: Output |
Step 1: Setting the error precision |
|
|
Step 2: Tackle |
and |
|
|
|
Step 3: Calculate |
Step 4: While{ |
% |
%elements in |
|
|
Step 5: |
Step 6: Output |
Step 1: Set the number |
search frequency |
bound |
volume attenuation coefficient |
Set the initial number of iterations as |
as |
Step 2: Initialize the position, the loudness and the pulse rate for each bat. |
For |
|
% |
% distribution. % |
|
|
Endfor |
Step 3: Calculate the fitness for each bat. |
|
|
Step 4: Calculate the position and the fitness for each bat. |
For |
|
|
|
If |
|
% |
Endif |
|
If |
|
|
|
Endif |
Endfor |
Step 5: Select the optimal position among all the bats. |
|
Step 6: Check iterations. |
If |
|
Endif |
Step 7: Output the optimal position |
Step 1: Set the number |
search frequency |
bound |
volume attenuation coefficient |
Set the initial number of iterations as |
as |
Step 2: Initialize the position, the loudness and the pulse rate for each bat. |
For |
|
% |
% distribution. % |
|
|
Endfor |
Step 3: Calculate the fitness for each bat. |
|
|
Step 4: Calculate the position and the fitness for each bat. |
For |
|
|
|
If |
|
% |
Endif |
|
If |
|
|
|
Endif |
Endfor |
Step 5: Select the optimal position among all the bats. |
|
Step 6: Check iterations. |
If |
|
Endif |
Step 7: Output the optimal position |
Sleeping parameter | Enrollment | Socially optimal | Maximum social | Enrollment |
probability |
arrival rate |
welfare |
fee |
|
no sleep | 0.3 | 2.1256 | 73.0759 | 114.5963 |
no sleep | 0.4 | 1.8489 | 68.6578 | 92.8360 |
no sleep | 0.5 | 1.6465 | 65.3641 | 79.3976 |
0.8 | 0.3 | 2.0560 | 65.4861 | 105.0306 |
0.8 | 0.4 | 1.7981 | 61.9026 | 85.2437 |
0.8 | 0.5 | 1.6020 | 59.2212 | 73.3388 |
0.2 | 0.3 | 1.8647 | 49.7374 | 78.4550 |
0.2 | 0.4 | 1.6420 | 47.9301 | 69.9957 |
0.2 | 0.5 | 1.4728 | 46.6180 | 60.8772 |
Sleeping parameter | Enrollment | Socially optimal | Maximum social | Enrollment |
probability |
arrival rate |
welfare |
fee |
|
no sleep | 0.3 | 2.1256 | 73.0759 | 114.5963 |
no sleep | 0.4 | 1.8489 | 68.6578 | 92.8360 |
no sleep | 0.5 | 1.6465 | 65.3641 | 79.3976 |
0.8 | 0.3 | 2.0560 | 65.4861 | 105.0306 |
0.8 | 0.4 | 1.7981 | 61.9026 | 85.2437 |
0.8 | 0.5 | 1.6020 | 59.2212 | 73.3388 |
0.2 | 0.3 | 1.8647 | 49.7374 | 78.4550 |
0.2 | 0.4 | 1.6420 | 47.9301 | 69.9957 |
0.2 | 0.5 | 1.4728 | 46.6180 | 60.8772 |
[1] |
Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106 |
[2] |
Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133 |
[3] |
Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134 |
[4] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[5] |
Yiling Chen, Baojun Bian. Optimal dividend policy in an insurance company with contagious arrivals of claims. Mathematical Control & Related Fields, 2021, 11 (1) : 1-22. doi: 10.3934/mcrf.2020024 |
[6] |
Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151 |
[7] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[8] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
[9] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[10] |
Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167 |
[11] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020449 |
[12] |
Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103 |
[13] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[14] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[15] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[16] |
Feimin Zhong, Jinxing Xie, Yuwei Shen. Bargaining in a multi-echelon supply chain with power structure: KS solution vs. Nash solution. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020172 |
[17] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[18] |
Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005 |
[19] |
Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020167 |
[20] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]