\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service

Abstract Full Text(HTML) Figure(5) / Table(3) Related Papers Cited by
  • Cloud computing makes it possible for application providers to provide services seamlessly and application users to receive services adaptively. By offering services that give users an initial experience, application providers can usually attract more users. This research proposes a type of sleeping mechanism-based cloud architecture where an experience service and an enrollment service are provided on one virtual machine (VM). Accordingly, we model the cloud architecture as a queue with an asynchronous multi-vacation and a selectable extra service. We also analyze the queueing model in the steady state by constructing a three-dimensional Markov chain. Following this, we evaluate the system performance of the proposed cloud architecture based on the energy conservation level of the system and the mean delay of the visitors who select the enrollment service. Moreover, we study the Nash equilibrium strategy of visitors by building an individual welfare function, and develop an improved intelligent search algorithm to investigate the socially optimal strategy of visitors. Aiming to achieve a social optimum, we formulate a pricing policy with a reasonable enrollment fee.

    Mathematics Subject Classification: Primary: 60K25, 35Q91; Secondary: 90B18.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Sleeping mechanism-based cloud architecture

    Figure 2.  Trends for the mean delay of the visitors who select the enrollment service

    Figure 3.  Trends for the energy conservation level of the cloud system

    Figure 4.  Trends for the individual welfare $ G_{ind}(\lambda) $

    Figure 5.  Trends for the social welfare $ G_{soc}(\lambda) $

    Table 1.  Iterative algorithm to calculate the rate matrix $ \mathit{\boldsymbol{R}} $.

    Step 1: Setting the error precision $ \varepsilon $ (for example, $ \varepsilon=10^{-8} $). Initialize $ c, \ \lambda,\ \mu_1, $
    $ \mu_2, \ \theta $ and $ q $ as needed. Initialize the rate matrix $ \mathit{\boldsymbol{R}}={\boldsymbol{0}} $ with an order of
    $ m \times m $, where $ m=\left(\dfrac {1}{2}(c+1)(c+2)\right) $.
    Step 2: Tackle $ \mathit{\boldsymbol{Q}} $ by using the consistency technique formula and get $ \mathit{\boldsymbol{Q}}_{c+1,c}' $, $ \mathit{\boldsymbol{Q}}_{c,c}' $
    and $ \mathit{\boldsymbol{Q}}'_{c,c+1}\ \! $.
    $ \mathit{\boldsymbol{Q}}'=\mathit{\boldsymbol{Q}}/U $,
    $ \mathit{\boldsymbol{Q}}_{c+1,c}' =\mathit{\boldsymbol{Q}}_{c+1,c}/U $,
    $ \mathit{\boldsymbol{Q}}_{c,c}' =\mathit{\boldsymbol{Q}}_{c,c}/U $,
    $ \mathit{\boldsymbol{Q}}'_{c,c+1}\ \! =\mathit{\boldsymbol{Q}}_{c,c+1}/U $.
    Step 3: Calculate $ \mathit{\boldsymbol{R}}^* $ by
    $ \mathit{\boldsymbol{R}}^*=\mathit{\boldsymbol{R}}^2\times\mathit{\boldsymbol{Q}}_{c+1,c}'+\mathit{\boldsymbol{R}}\times(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{Q}}_{c,c}')+\mathit{\boldsymbol{Q}}'_{c,c+1}\ \! $.
    %$ \mathit{\boldsymbol{I}} $ is an identity matrix. %
    Step 4: While{$ ||\mathit{\boldsymbol{R}}-\mathit{\boldsymbol{R}}^*||_\infty$}>ε
    % $ ||{\mathit{\boldsymbol{R}}}-\mathit{\boldsymbol{R}}^*||_\infty = {\max} \Big \{\sum\limits^m_{i=1} \sum\limits^m_{j=1}|r_{i,j}-r_{i,j}^*| \Big \} $, where $ r_{i,j} $ and $ r_{i,j}^{*} $ are
    %elements in $ \mathit{\boldsymbol{R}} $ and $ \mathit{\boldsymbol{R}}^{*} $ respectively.
    $ \mathit{\boldsymbol{R}}=\mathit{\boldsymbol{R}}^* $,
    $ \mathit{\boldsymbol{R}}^*=\mathit{\boldsymbol{R}}^2\times\mathit{\boldsymbol{Q}}_{c+1,c}'+\mathit{\boldsymbol{R}}\times(\mathit{\boldsymbol{I}}+\mathit{\boldsymbol{Q}}_{c,c}')+\mathit{\boldsymbol{Q}}'_{c,c+1}\ \! $.
    Step 5: $ \mathit{\boldsymbol{R}}=\mathit{\boldsymbol{R}}^* $,
    Step 6: Output $ \mathit{\boldsymbol{R}}. $
     | Show Table
    DownLoad: CSV

    Table 2.  Improved Bat algorithm to obtain $ \lambda^{*} $ and $ G_{soc}(\lambda^{*}) $.

    Step 1: Set the number $ N $ of bats, loudness $ A_0 $, pulse rate $ R_0 $, the maximum
    search frequency $ f_{max} $, the minimum search frequency $ f_{min} $, upper search
    bound $ U_b $, lower search bound $ L_b $, the minimum moving step $ step_{min} $,
    volume attenuation coefficient $ \eta $, searching frequency enhancement factor $ \phi $.
    Set the initial number of iterations as $ iter=1 $, the maximum iterations
    as $ iter_{max} $.
    Step 2: Initialize the position, the loudness and the pulse rate for each bat.
    For $ i = 1 : N $
    $ \lambda_i = L_b +(U_b-L_b)*rand $
    % $ rand $ returns a sample in the interval (0, 1) from the "uniform''
    % distribution. %
    $ A_i= A_0 $
    $ r_i =R_0 $
    Endfor
    Step 3: Calculate the fitness for each bat.
    $ G_{soc}(\lambda_i) = \lambda_i \big( R_1+ q R_2 - \varepsilon \big(qE[T_1]+(1-q)E[T_2]\big) \big)+\psi E[S], $
    $ i \in \{1,2,\ldots,N\} $,
    $ {\lambda^{*}}=\underset {i \in \{1,2,\ldots,N\}} {\rm argmax} \{G_{soc}(\lambda_i)\} $ % $ \lambda^{*} $ is present optimal position.
    Step 4: Calculate the position and the fitness for each bat.
    For $ i=1:N $
    $ f_i = f_{min} +(f_{max}-f_{min})*rand $
    $ v_i = v_i + (\lambda_i -\lambda^{*})f_i $
    $ \lambda_i = \lambda_i+v_i $
    If $ r_i$< rand
    $ \lambda_i = \lambda^{*} + (1/(2 \times iter)+ step_{min}) * randn $
    % $ randn $ returns a sample from the "standard normal'' distribution.
    Endif
    $ G'_{soc}(\lambda_i) = \lambda_i \big( R_1+ q R_2 - \varepsilon \big(qE[T_1]+(1-q)E[T_2]\big) \big)+\psi E[S] $
    If $ \big(G'_{soc}(\lambda_i)>G_{soc}(\lambda_i)\big)$ and $ \big(A_i>rand )$
    $ G_{soc}(\lambda_i) = G'_{soc}(\lambda_i) $
    $ A_i = \eta A_i $
    $ r_i = R_0(1-exp(-\phi \times iter)) $
    Endif
    Endfor
    Step 5: Select the optimal position among all the bats.
    $ \lambda^{*}=\underset {i \in \{1,2,\ldots,N\}} {\rm argmax} \{G_{soc}(\lambda_i)\} $.
    Step 6: Check iterations.
    If $ iter< iter_{max} $
    $ iter=iter+1 $, go to Step 4
    Endif
    Step 7: Output the optimal position $ \lambda^{*} $ and the maximum fitness $ G_{soc}(\lambda^{*}) $.
     | Show Table
    DownLoad: CSV

    Table 3.  Numerical results for the enrollment fee

    Sleeping parameter Enrollment Socially optimal Maximum social Enrollment
    $ (\theta) $ probability $ (q) $ arrival rate $ (\lambda^{*}) $ welfare $ (G_{soc}(\lambda^*)) $ fee $ (f) $
    no sleep 0.3 2.1256 73.0759 114.5963
    no sleep 0.4 1.8489 68.6578 92.8360
    no sleep 0.5 1.6465 65.3641 79.3976
    0.8 0.3 2.0560 65.4861 105.0306
    0.8 0.4 1.7981 61.9026 85.2437
    0.8 0.5 1.6020 59.2212 73.3388
    0.2 0.3 1.8647 49.7374 78.4550
    0.2 0.4 1.6420 47.9301 69.9957
    0.2 0.5 1.4728 46.6180 60.8772
     | Show Table
    DownLoad: CSV
  • [1] S. AhnJ. LeeS. ParkS. Newaz and J. Choi, Competitive partial computation offloading for maximizing energy efficiency in mobile cloud computing, IEEE Access, 6 (2018), 899-912.  doi: 10.1109/ACCESS.2017.2776323.
    [2] R. BuyyaA. Beloglazov and J. Abawajy, Energy-efficient management of data center resources for cloud computing: A vision, architectural elements, and open challenges, Eprint arXiv, 12 (2010), 6-17. 
    [3] R. Dhanwate and V. Bhagat, Improving energy efficiency on android using cloud based services, International Journal of Advance Research in Computer Science and Management Studies, 3 (2015), 75-79. 
    [4] B. Doshi, Queueing systems with vacations–-A survey, Queueing Systems, 1 (1986), 29-66.  doi: 10.1007/BF01149327.
    [5] W. GaryP. Wang and M. Scott, A vacation queueing model with service breakdowns, Applied Mathematical Modelling, 24 (2000), 391-400.  doi: 10.1016/S0307-904X(99)00048-7.
    [6] M. Ghorbani-Mandolakani and M. Rad, ML and Bayes estimation in a Two-Phase tandem queue with a second optional service and random feedback, Communications in Statistics-Theory and Methods, 45 (2016), 2576-2591.  doi: 10.1080/03610926.2014.887107.
    [7] Z. GuiJ. XiaN. Zhou and  Q. HuangHow to Choose Cloud Services: Toward a Cloud Computing Cost Model, CRC Press, 2013. 
    [8] Z. Guo, M. Song and Q. Wang, Policy-based market-oriented cloud service management architecture, Proc. of the International Conference on Information and Management Engineering, Wuhan, China, (2011), 284–291. doi: 10.1007/978-3-642-24010-2_39.
    [9] J. HuJ. Deng and J. Wu, A green private cloud architecture with global collaboration, Telecommunication Systems, 52 (2013), 1269-1279.  doi: 10.1007/s11235-011-9639-5.
    [10] S. Hussein, Y. Alkabani and H. Mohamed, Green cloud computing: Datacenters power management policies and algorithms, Proc. of the 9th IEEE International Conference on Computer Engineering and Systems, Cairo, Egypt, (2015), 421–426. doi: 10.1109/ICCES.2014.7030998.
    [11] A. Jain and M. Jain, Multi-server machine repair problem with unreliable server and two types of spares under asynchronous vacation policy, International Journal of Mathematics in Operational Research, 10 (2017), 286-315.  doi: 10.1504/IJMOR.2017.083187.
    [12] S. JinH. Wu and W. Yue, Pricing policy for a cloud registration service with a novel cloud architecture, Cluster Computing, 22 (2019), 271-283.  doi: 10.1007/s10586-018-2854-z.
    [13] S. Jin, X. Ma and W. Yue, Energy-saving strategy for green cognitive radio networks with an LTE-advanced structure, Journal of Communications and Networks, 18 (2016), 610-618.
    [14] Z. MaP. Wang and W. Yue, Performance analysis and optimization of a pseudo-fault Geo/Geo/1 repairable queueing system with $N$-policy, setup time and multiple working vacations, Journal of Industrial and Management Optimization, 13 (2017), 1467-1481.  doi: 10.3934/jimo.2017002.
    [15] K. Madan, An M/G/1 queue with second optional service, Queueing Systems, 34 (2000), 37-46.  doi: 10.1023/A:1019144716929.
    [16] M. NeutsMatrix-Geometric Solutions in Stochastic Models, Johns Hopkins University Press, 1981. 
    [17] P. Shi, H. Wang, X. Yue, S. Yang, X. Fu and Y. Peng, Corporation architecture for multiple cloud service providers in jointcloud computing, Proc. of the 37th International Conference on Distributed Computing Systems Workshops, Atlanta, USA, (2017), 294–298. doi: 10.1109/ICDCSW.2017.9.
    [18] C. SinghM. Jain and B. Kumar, Queueing model with state-dependent bulk arrival and second optional service, International Journal of Mathematics in Operational Research, 3 (2011), 322-340.  doi: 10.1504/IJMOR.2011.040029.
    [19] A. Tarabia, Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs, Journal of Communications and Networks, 7 (2017), 811-823.  doi: 10.3934/jimo.2011.7.811.
    [20] C. WeiL. Cai and J. Wang, A discrete-time Geom/G/1 retrial queue with balking customers and second optional service, Opsearch, 53 (2016), 344-357.  doi: 10.1007/s12597-015-0232-7.
    [21] H. Wu, S. Jin, W. Yue and Y. Takahashi, Performance evaluation for a registration service with an energy efficient cloud architecture, Proc. of the International Conference on Queueing Theory and Network Applications, Tsukuba City, Japan, (2018), 133–141. doi: 10.1007/978-3-319-93736-6_10.
    [22] K. Ye, D. Huang, X. Jiang, H. Chen and S. Wu, Virtual machine based energy-efficient data center architecture for cloud computing: A performance perspective, Proc. of the IEEE/ACM International Conference on Green Computing and Communications, Hangzhou, China, (2010), 171–178. doi: 10.1109/GreenCom-CPSCom.2010.108.
  • 加载中

Figures(5)

Tables(3)

SHARE

Article Metrics

HTML views(2510) PDF downloads(314) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return