-
Previous Article
Rumor propagation controlling based on finding important nodes in complex network
- JIMO Home
- This Issue
-
Next Article
Strict feasibility of variational inclusion problems in reflexive Banach spaces
Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints
1. | Department of Mathematics, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey |
2. | Azerbaijan National Academy of Sciences Institute of Control Systems, Baku, Azerbaijan |
The present paper studies a new class of problems of optimal control theory with linear second order self-adjoint Sturm-Liouville type differential operators and with functional and non-functional endpoint constraints. Sufficient conditions of optimality, containing both the second order Euler-Lagrange and Hamiltonian type inclusions are derived. The presence of functional constraints generates a special second order transversality inclusions and complementary slackness conditions peculiar to inequality constraints; this approach and results make a bridge between optimal control problem with Sturm-Liouville type differential differential inclusions and constrained mathematical programming problems in finite-dimensional spaces.The idea for obtaining optimality conditions is based on applying locally-adjoint mappings to Sturm-Liouville type set-valued mappings. The result generalizes to the problem with a second order non-self-adjoint differential operator. Furthermore, practical applications of these results are demonstrated by optimization of some semilinear optimal control problems for which the Pontryagin maximum condition is obtained. A numerical example is given to illustrate the feasibility and effectiveness of the theoretic results obtained.
References:
[1] |
S. Adly, A. Hantoute and M. Th'era,
Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Mathem. Program., 157 (2016), 349-374.
doi: 10.1007/s10107-015-0938-6. |
[2] |
N. U. Ahmed,
Differential inclusions operator valued measures and optimal control, Dynamic Syst. Appl., 16 (2007), 13-35.
|
[3] |
D. Azzam-Laouir and L. Sabrina,
Existence solutions for a class of second order differential inclusions, Pacific Journ. of Optim., 6 (2005), 339-346.
|
[4] |
A. Bagirov, N. Karmitsa and M. Makela, Introduction to Nonsmooth Optimization, Springer, 2014.
doi: 10.1007/978-3-319-08114-4. |
[5] |
A. Cernea,
Continuous version of Filippov's theorem for a Sturm-Liouville type differential inclusion, E.J. Differ. Equat., 2008 (2008), 1-7.
|
[6] |
F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[7] |
Y. Gao, X. Yang, J. Yang and H. Yan,
Scalarizations and Lagrange multipliers for approximat solutions in the vector optimization problems with set-valued maps, J. Industrial Manag. Optim., 11 (2014), 673-683.
doi: 10.3934/jimo.2015.11.673. |
[8] |
S. J. Li, S. K. Zhu and K. Lay Teo,
New generalized second-order contingent epiderivatives and set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 587-604.
doi: 10.1007/s10957-011-9915-2. |
[9] |
Q. Liqun, K. Lay Teo and X. Yang, Optimization and Control with Applications, Springer, 2005.
doi: 10.1007/b104943. |
[10] |
Y. Liu, J. Wu and Z. Li,
Impulsive boundary value problems for Sturm-Liouville type differential inclusions, J. Syst. Sci. Complexity, 20 (2007), 370-380.
doi: 10.1007/s11424-007-9032-3. |
[11] |
P. D. Loewen and R. T. Rockafellar,
Optimal control of unbounded differential inclusions, SIAM J Contr Optim., 32 (1994), 442-470.
doi: 10.1137/S0363012991217494. |
[12] |
E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier: Boston, USA, 2011.
doi: 10.1016/B978-0-12-388428-2.00001-1. |
[13] |
E. N. Mahmudov,
Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. (NoDEA), 21 (2014), 1-26.
doi: 10.1007/s00030-013-0234-1. |
[14] |
E. N. Mahmudov,
Optimal control of second order delay-discrete and delay differential inclusions with state constraints, Evol. Equat. Cont. Theory (EECT), 7 (2018), 501-529.
doi: 10.3934/eect.2018024. |
[15] |
E. N. Mahmudov,
Optimization of Fourth-Order Differential Inclusions, Proceed. Institute Mathem. Mechanics, 44 (2018), 90-106.
|
[16] |
E. N. Mahmudov,
Optimization of second-order discrete approximation inclusions, Numeric. Funct. Anal. Optim., 36 (2015), 624-643.
doi: 10.1080/01630563.2015.1014048. |
[17] |
E. N. Mahmudov,
Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim, Theory Appl., 177 (2018), 345-375.
doi: 10.1007/s10957-018-1260-2. |
[18] |
E. N. Mahmudov,
Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Industrial Manag. Optim., (2018).
doi: 10.3934/jimo.2018145. |
[19] |
B. S. Mordukhovich,
Optimal control of semilinear unbounded evolution inclusions with functional constraints, J. Optim. Theory Appl., 167 (2015), 821-841.
doi: 10.1007/s10957-013-0301-0. |
[20] |
Y. Xu and Z. Peng,
Higher-order sensitivity analysis in set-valued optimization under Henig efficiency, J. Industrial Manag. Optim., 13 (2017), 313-327.
doi: 10.3934/jimo.2016019. |
show all references
References:
[1] |
S. Adly, A. Hantoute and M. Th'era,
Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Mathem. Program., 157 (2016), 349-374.
doi: 10.1007/s10107-015-0938-6. |
[2] |
N. U. Ahmed,
Differential inclusions operator valued measures and optimal control, Dynamic Syst. Appl., 16 (2007), 13-35.
|
[3] |
D. Azzam-Laouir and L. Sabrina,
Existence solutions for a class of second order differential inclusions, Pacific Journ. of Optim., 6 (2005), 339-346.
|
[4] |
A. Bagirov, N. Karmitsa and M. Makela, Introduction to Nonsmooth Optimization, Springer, 2014.
doi: 10.1007/978-3-319-08114-4. |
[5] |
A. Cernea,
Continuous version of Filippov's theorem for a Sturm-Liouville type differential inclusion, E.J. Differ. Equat., 2008 (2008), 1-7.
|
[6] |
F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[7] |
Y. Gao, X. Yang, J. Yang and H. Yan,
Scalarizations and Lagrange multipliers for approximat solutions in the vector optimization problems with set-valued maps, J. Industrial Manag. Optim., 11 (2014), 673-683.
doi: 10.3934/jimo.2015.11.673. |
[8] |
S. J. Li, S. K. Zhu and K. Lay Teo,
New generalized second-order contingent epiderivatives and set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 587-604.
doi: 10.1007/s10957-011-9915-2. |
[9] |
Q. Liqun, K. Lay Teo and X. Yang, Optimization and Control with Applications, Springer, 2005.
doi: 10.1007/b104943. |
[10] |
Y. Liu, J. Wu and Z. Li,
Impulsive boundary value problems for Sturm-Liouville type differential inclusions, J. Syst. Sci. Complexity, 20 (2007), 370-380.
doi: 10.1007/s11424-007-9032-3. |
[11] |
P. D. Loewen and R. T. Rockafellar,
Optimal control of unbounded differential inclusions, SIAM J Contr Optim., 32 (1994), 442-470.
doi: 10.1137/S0363012991217494. |
[12] |
E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier: Boston, USA, 2011.
doi: 10.1016/B978-0-12-388428-2.00001-1. |
[13] |
E. N. Mahmudov,
Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. (NoDEA), 21 (2014), 1-26.
doi: 10.1007/s00030-013-0234-1. |
[14] |
E. N. Mahmudov,
Optimal control of second order delay-discrete and delay differential inclusions with state constraints, Evol. Equat. Cont. Theory (EECT), 7 (2018), 501-529.
doi: 10.3934/eect.2018024. |
[15] |
E. N. Mahmudov,
Optimization of Fourth-Order Differential Inclusions, Proceed. Institute Mathem. Mechanics, 44 (2018), 90-106.
|
[16] |
E. N. Mahmudov,
Optimization of second-order discrete approximation inclusions, Numeric. Funct. Anal. Optim., 36 (2015), 624-643.
doi: 10.1080/01630563.2015.1014048. |
[17] |
E. N. Mahmudov,
Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim, Theory Appl., 177 (2018), 345-375.
doi: 10.1007/s10957-018-1260-2. |
[18] |
E. N. Mahmudov,
Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Industrial Manag. Optim., (2018).
doi: 10.3934/jimo.2018145. |
[19] |
B. S. Mordukhovich,
Optimal control of semilinear unbounded evolution inclusions with functional constraints, J. Optim. Theory Appl., 167 (2015), 821-841.
doi: 10.1007/s10957-013-0301-0. |
[20] |
Y. Xu and Z. Peng,
Higher-order sensitivity analysis in set-valued optimization under Henig efficiency, J. Industrial Manag. Optim., 13 (2017), 313-327.
doi: 10.3934/jimo.2016019. |
[1] |
Nuno Costa Dias, Andrea Posilicano, João Nuno Prata. Self-adjoint, globally defined Hamiltonian operators for systems with boundaries. Communications on Pure and Applied Analysis, 2011, 10 (6) : 1687-1706. doi: 10.3934/cpaa.2011.10.1687 |
[2] |
Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405 |
[3] |
N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050 |
[4] |
Abdallah El Hamidi, Aziz Hamdouni, Marwan Saleh. On eigenelements sensitivity for compact self-adjoint operators and applications. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 445-455. doi: 10.3934/dcdss.2016006 |
[5] |
Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068 |
[6] |
Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems and Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004 |
[7] |
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in set-valued dynamics. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1965-1975. doi: 10.3934/dcdsb.2017115 |
[8] |
Geng-Hua Li, Sheng-Jie Li. Unified optimality conditions for set-valued optimizations. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1101-1116. doi: 10.3934/jimo.2018087 |
[9] |
Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 |
[10] |
Kendry J. Vivas, Víctor F. Sirvent. Metric entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022010 |
[11] |
Yu Zhang, Tao Chen. Minimax problems for set-valued mappings with set optimization. Numerical Algebra, Control and Optimization, 2014, 4 (4) : 327-340. doi: 10.3934/naco.2014.4.327 |
[12] |
Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052 |
[13] |
Rashad M. Asharabi, Jürgen Prestin. Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4143-4158. doi: 10.3934/cpaa.2020185 |
[14] |
Chuan-Fu Yang, Natalia Pavlovna Bondarenko, Xiao-Chuan Xu. An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Problems and Imaging, 2020, 14 (1) : 153-169. doi: 10.3934/ipi.2019068 |
[15] |
Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial and Management Optimization, 2020, 16 (1) : 169-187. doi: 10.3934/jimo.2018145 |
[16] |
Raziye Mert, Thabet Abdeljawad, Allan Peterson. A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2417-2434. doi: 10.3934/dcdss.2020171 |
[17] |
Günter Leugering, Gisèle Mophou, Maryse Moutamal, Mahamadi Warma. Optimal control problems of parabolic fractional Sturm-Liouville equations in a star graph. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022015 |
[18] |
Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two set-valued mappings. Journal of Industrial and Management Optimization, 2013, 9 (1) : 1-12. doi: 10.3934/jimo.2013.9.1 |
[19] |
Sina Greenwood, Rolf Suabedissen. 2-manifolds and inverse limits of set-valued functions on intervals. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5693-5706. doi: 10.3934/dcds.2017246 |
[20] |
Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]