-
Previous Article
Rumor propagation controlling based on finding important nodes in complex network
- JIMO Home
- This Issue
-
Next Article
Strict feasibility of variational inclusion problems in reflexive Banach spaces
Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints
1. | Department of Mathematics, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey |
2. | Azerbaijan National Academy of Sciences Institute of Control Systems, Baku, Azerbaijan |
The present paper studies a new class of problems of optimal control theory with linear second order self-adjoint Sturm-Liouville type differential operators and with functional and non-functional endpoint constraints. Sufficient conditions of optimality, containing both the second order Euler-Lagrange and Hamiltonian type inclusions are derived. The presence of functional constraints generates a special second order transversality inclusions and complementary slackness conditions peculiar to inequality constraints; this approach and results make a bridge between optimal control problem with Sturm-Liouville type differential differential inclusions and constrained mathematical programming problems in finite-dimensional spaces.The idea for obtaining optimality conditions is based on applying locally-adjoint mappings to Sturm-Liouville type set-valued mappings. The result generalizes to the problem with a second order non-self-adjoint differential operator. Furthermore, practical applications of these results are demonstrated by optimization of some semilinear optimal control problems for which the Pontryagin maximum condition is obtained. A numerical example is given to illustrate the feasibility and effectiveness of the theoretic results obtained.
References:
[1] |
S. Adly, A. Hantoute and M. Th'era,
Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Mathem. Program., 157 (2016), 349-374.
doi: 10.1007/s10107-015-0938-6. |
[2] |
N. U. Ahmed,
Differential inclusions operator valued measures and optimal control, Dynamic Syst. Appl., 16 (2007), 13-35.
|
[3] |
D. Azzam-Laouir and L. Sabrina,
Existence solutions for a class of second order differential inclusions, Pacific Journ. of Optim., 6 (2005), 339-346.
|
[4] |
A. Bagirov, N. Karmitsa and M. Makela, Introduction to Nonsmooth Optimization, Springer, 2014.
doi: 10.1007/978-3-319-08114-4. |
[5] |
A. Cernea,
Continuous version of Filippov's theorem for a Sturm-Liouville type differential inclusion, E.J. Differ. Equat., 2008 (2008), 1-7.
|
[6] |
F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[7] |
Y. Gao, X. Yang, J. Yang and H. Yan,
Scalarizations and Lagrange multipliers for approximat solutions in the vector optimization problems with set-valued maps, J. Industrial Manag. Optim., 11 (2014), 673-683.
doi: 10.3934/jimo.2015.11.673. |
[8] |
S. J. Li, S. K. Zhu and K. Lay Teo,
New generalized second-order contingent epiderivatives and set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 587-604.
doi: 10.1007/s10957-011-9915-2. |
[9] |
Q. Liqun, K. Lay Teo and X. Yang, Optimization and Control with Applications, Springer, 2005.
doi: 10.1007/b104943. |
[10] |
Y. Liu, J. Wu and Z. Li,
Impulsive boundary value problems for Sturm-Liouville type differential inclusions, J. Syst. Sci. Complexity, 20 (2007), 370-380.
doi: 10.1007/s11424-007-9032-3. |
[11] |
P. D. Loewen and R. T. Rockafellar,
Optimal control of unbounded differential inclusions, SIAM J Contr Optim., 32 (1994), 442-470.
doi: 10.1137/S0363012991217494. |
[12] |
E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier: Boston, USA, 2011.
doi: 10.1016/B978-0-12-388428-2.00001-1. |
[13] |
E. N. Mahmudov,
Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. (NoDEA), 21 (2014), 1-26.
doi: 10.1007/s00030-013-0234-1. |
[14] |
E. N. Mahmudov,
Optimal control of second order delay-discrete and delay differential inclusions with state constraints, Evol. Equat. Cont. Theory (EECT), 7 (2018), 501-529.
doi: 10.3934/eect.2018024. |
[15] |
E. N. Mahmudov,
Optimization of Fourth-Order Differential Inclusions, Proceed. Institute Mathem. Mechanics, 44 (2018), 90-106.
|
[16] |
E. N. Mahmudov,
Optimization of second-order discrete approximation inclusions, Numeric. Funct. Anal. Optim., 36 (2015), 624-643.
doi: 10.1080/01630563.2015.1014048. |
[17] |
E. N. Mahmudov,
Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim, Theory Appl., 177 (2018), 345-375.
doi: 10.1007/s10957-018-1260-2. |
[18] |
E. N. Mahmudov,
Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Industrial Manag. Optim., (2018).
doi: 10.3934/jimo.2018145. |
[19] |
B. S. Mordukhovich,
Optimal control of semilinear unbounded evolution inclusions with functional constraints, J. Optim. Theory Appl., 167 (2015), 821-841.
doi: 10.1007/s10957-013-0301-0. |
[20] |
Y. Xu and Z. Peng,
Higher-order sensitivity analysis in set-valued optimization under Henig efficiency, J. Industrial Manag. Optim., 13 (2017), 313-327.
doi: 10.3934/jimo.2016019. |
show all references
References:
[1] |
S. Adly, A. Hantoute and M. Th'era,
Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain, Mathem. Program., 157 (2016), 349-374.
doi: 10.1007/s10107-015-0938-6. |
[2] |
N. U. Ahmed,
Differential inclusions operator valued measures and optimal control, Dynamic Syst. Appl., 16 (2007), 13-35.
|
[3] |
D. Azzam-Laouir and L. Sabrina,
Existence solutions for a class of second order differential inclusions, Pacific Journ. of Optim., 6 (2005), 339-346.
|
[4] |
A. Bagirov, N. Karmitsa and M. Makela, Introduction to Nonsmooth Optimization, Springer, 2014.
doi: 10.1007/978-3-319-08114-4. |
[5] |
A. Cernea,
Continuous version of Filippov's theorem for a Sturm-Liouville type differential inclusion, E.J. Differ. Equat., 2008 (2008), 1-7.
|
[6] |
F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, Graduate Texts in Mathematics, 264, Springer, 2013.
doi: 10.1007/978-1-4471-4820-3. |
[7] |
Y. Gao, X. Yang, J. Yang and H. Yan,
Scalarizations and Lagrange multipliers for approximat solutions in the vector optimization problems with set-valued maps, J. Industrial Manag. Optim., 11 (2014), 673-683.
doi: 10.3934/jimo.2015.11.673. |
[8] |
S. J. Li, S. K. Zhu and K. Lay Teo,
New generalized second-order contingent epiderivatives and set-valued optimization problems, J. Optim. Theory Appl., 152 (2012), 587-604.
doi: 10.1007/s10957-011-9915-2. |
[9] |
Q. Liqun, K. Lay Teo and X. Yang, Optimization and Control with Applications, Springer, 2005.
doi: 10.1007/b104943. |
[10] |
Y. Liu, J. Wu and Z. Li,
Impulsive boundary value problems for Sturm-Liouville type differential inclusions, J. Syst. Sci. Complexity, 20 (2007), 370-380.
doi: 10.1007/s11424-007-9032-3. |
[11] |
P. D. Loewen and R. T. Rockafellar,
Optimal control of unbounded differential inclusions, SIAM J Contr Optim., 32 (1994), 442-470.
doi: 10.1137/S0363012991217494. |
[12] |
E. N. Mahmudov, Approximation and Optimization of Discrete and Differential Inclusions, Elsevier: Boston, USA, 2011.
doi: 10.1016/B978-0-12-388428-2.00001-1. |
[13] |
E. N. Mahmudov,
Approximation and Optimization of Higher order discrete and differential inclusions, Nonlin. Diff. Equat. Appl. (NoDEA), 21 (2014), 1-26.
doi: 10.1007/s00030-013-0234-1. |
[14] |
E. N. Mahmudov,
Optimal control of second order delay-discrete and delay differential inclusions with state constraints, Evol. Equat. Cont. Theory (EECT), 7 (2018), 501-529.
doi: 10.3934/eect.2018024. |
[15] |
E. N. Mahmudov,
Optimization of Fourth-Order Differential Inclusions, Proceed. Institute Mathem. Mechanics, 44 (2018), 90-106.
|
[16] |
E. N. Mahmudov,
Optimization of second-order discrete approximation inclusions, Numeric. Funct. Anal. Optim., 36 (2015), 624-643.
doi: 10.1080/01630563.2015.1014048. |
[17] |
E. N. Mahmudov,
Optimization of Mayer problem with Sturm-Liouville-type differential inclusions, J. Optim, Theory Appl., 177 (2018), 345-375.
doi: 10.1007/s10957-018-1260-2. |
[18] |
E. N. Mahmudov,
Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints, J. Industrial Manag. Optim., (2018).
doi: 10.3934/jimo.2018145. |
[19] |
B. S. Mordukhovich,
Optimal control of semilinear unbounded evolution inclusions with functional constraints, J. Optim. Theory Appl., 167 (2015), 821-841.
doi: 10.1007/s10957-013-0301-0. |
[20] |
Y. Xu and Z. Peng,
Higher-order sensitivity analysis in set-valued optimization under Henig efficiency, J. Industrial Manag. Optim., 13 (2017), 313-327.
doi: 10.3934/jimo.2016019. |
[1] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[2] |
Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011 |
[3] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[4] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[5] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073 |
[6] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[7] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001 |
[8] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406 |
[9] |
Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268 |
[10] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001 |
[11] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[12] |
Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029 |
[13] |
Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225 |
[14] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[15] |
Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617 |
[16] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[17] |
Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021021 |
[18] |
Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021059 |
[19] |
Joe Gildea, Adrian Korban, Abidin Kaya, Bahattin Yildiz. Constructing self-dual codes from group rings and reverse circulant matrices. Advances in Mathematics of Communications, 2021, 15 (3) : 471-485. doi: 10.3934/amc.2020077 |
[20] |
Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021072 |
2019 Impact Factor: 1.366
Tools
Metrics
Other articles
by authors
[Back to Top]