September  2020, 16(5): 2521-2529. doi: 10.3934/jimo.2019067

Rumor propagation controlling based on finding important nodes in complex network

1. 

School of Business Administration, Northeastern University, Shenyang 110169, China

2. 

Software College, Northeastern University, Shenyang 110169, China

3. 

School of Economics and Management, Tongji University, Shanghai 200092, China

* Corresponding author: Yixin Zhang

Received  October 2018 Revised  December 2018 Published  July 2019

The rumor propagation analysis and important nodes detection is a hot topic in complex network under crisis situation. The traditional propagation model does not consider enough states, so it cannot intact reflect the real world. In this paper, a new rumor propagation model which considers the Wiseman and the Truth Spreader is proposed based on the Graph Theory. Then, 3 new methods are proposed to find important nodes in the new model. These methods consider the differences between nodes to evaluate the importance of the nodes. Finally, 4 networks are demonstrated to show that the 3 proposed methods are useful to control rumor propagation.

Citation: Jianfeng Jia, Xuewei Liu, Yixin Zhang, Zhe Li, Yanjie Xu, Jiaqi Yan. Rumor propagation controlling based on finding important nodes in complex network. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2521-2529. doi: 10.3934/jimo.2019067
References:
[1]

K. BerahmandA. Bouyer and N. Samadi, A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos, 110 (2018), 41-54.   Google Scholar

[2]

D. B. ChenL. Y. LvM. S. ShangC. Yi and T. Zhou, Identifying influential nodes in complex networks, Physica A, 391 (2012), 1777-1787.  doi: 10.1016/j.physa.2011.09.017.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1464-3634.  doi: 10.1038/2041118a0.  Google Scholar

[4]

R. GranizoF. R. BlanquezE. Rebollo and C. A. Platero, A novel ground fault non-directional selective protection method for ungrounded distribution networks, Energies, 8 (2015), 1291-1316.  doi: 10.3390/en8021291.  Google Scholar

[5]

V. L. M. HuszarJ. C. NaboutM. O. AppelJ. B. O. SantosD. S. Abe and L. H. S. Silva, Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin, Journal of Plankton Research, 660 (2015), 1190-1200.  doi: 10.1093/plankt/fbv084.  Google Scholar

[6]

M. KitsakL. K. GallosS. Havlin and F. Liljeros, Identifying influential spreaders in complex networks, Nature, 6 (2010), 888-893.   Google Scholar

[7]

D. Li and J. Ma, How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Physica A, 46 (2017), 284-292.  doi: 10.1016/j.physa.2016.11.033.  Google Scholar

[8]

Y. LiuB. WeiY. X. DuF. Y. Xiao and Y. Deng, Identifying inflential spreaders by weight degree centrality in complex networks, Chaos, 86 (2016), 1-7.  doi: 10.1016/j.chaos.2016.01.030.  Google Scholar

[9]

Y. MorenoM. Nekovee and A. F. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 1464-3634.  doi: 10.1103/PhysRevE.69.066130.  Google Scholar

[10]

Z. F. PanX. F. Wang and X. Li, Simulation investigation on rumor spreading on scale-free network with tunable clustering, Journal of System Simulation, 18 (2006), 2346-2348.   Google Scholar

[11]

T. RenY. F. WangD. DuM. M. Liu and A. Siddiqi, The guitar chord-generating algorithm based on complex network, Physica A, 443 (2016), 1-13.  doi: 10.1016/j.physa.2015.09.041.  Google Scholar

[12]

T. RenY. F. WangM. M. Liu and Y. J. Xu, Analysis of robustness of urban bus network, Chinese Physics B, 25 (2016).  doi: 10.1088/1674-1056/25/2/020101.  Google Scholar

[13]

Y. SunY. MaF. ZhangY. Ma and W. Shen, Key nodes discovery in large-scale logistics network based on MapReduce, IEEE International Conference on Systems, (2016), 1309-1314.  doi: 10.1109/SMC.2015.233.  Google Scholar

[14]

Z. H. TanJ. Y. NingY. LiuX. W. WangG. M. Yang and W. Yang, ECR Model: An elastic collision-based rumor-propagation model in online social networks, IEEE Access, 4 (2016), 6105-6120.   Google Scholar

[15]

B. X. WangY. F. WenP. F. Ma and P. Hu, A Dynamic-TDMA MAC mechanism for directional networks with a central node, Radio Engineering, (2015), 24-29.   Google Scholar

[16]

J. WeiB. Bu and L. Liang, Estimating the diffusion models of crisis information in micro blog, Journal of Informatics, 6 (2012), 600-610.  doi: 10.1016/j.joi.2012.06.005.  Google Scholar

[17]

H. XieY. Yan and Y. Hou, Dynamical behavior of rumor in online social networks, International Journal of Multimedia and Ubiquitous Engineering, 11 (2016), 125-132.  doi: 10.14257/ijmue.2016.11.3.12.  Google Scholar

[18]

D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 1464-3634.  doi: 10.1103/PhysRevE.65.041908.  Google Scholar

[19]

J. Zeng, C. H. Chan and K. W. Fu, How social media construct "truth" around crisis events: Weibo's rumor management strategies after the 2015 Tianjin blasts, Policy & Internet, in press, (2017). doi: 10.1002/poi3.155.  Google Scholar

[20]

Z. Zhu and Y. Liu, Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering, Complex Systems & Complexity Science, 13 (2016), 74-82.   Google Scholar

show all references

References:
[1]

K. BerahmandA. Bouyer and N. Samadi, A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos, 110 (2018), 41-54.   Google Scholar

[2]

D. B. ChenL. Y. LvM. S. ShangC. Yi and T. Zhou, Identifying influential nodes in complex networks, Physica A, 391 (2012), 1777-1787.  doi: 10.1016/j.physa.2011.09.017.  Google Scholar

[3]

D. J. Daley and D. G. Kendall, Epidemics and rumours, Nature, 204 (1964), 1464-3634.  doi: 10.1038/2041118a0.  Google Scholar

[4]

R. GranizoF. R. BlanquezE. Rebollo and C. A. Platero, A novel ground fault non-directional selective protection method for ungrounded distribution networks, Energies, 8 (2015), 1291-1316.  doi: 10.3390/en8021291.  Google Scholar

[5]

V. L. M. HuszarJ. C. NaboutM. O. AppelJ. B. O. SantosD. S. Abe and L. H. S. Silva, Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin, Journal of Plankton Research, 660 (2015), 1190-1200.  doi: 10.1093/plankt/fbv084.  Google Scholar

[6]

M. KitsakL. K. GallosS. Havlin and F. Liljeros, Identifying influential spreaders in complex networks, Nature, 6 (2010), 888-893.   Google Scholar

[7]

D. Li and J. Ma, How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Physica A, 46 (2017), 284-292.  doi: 10.1016/j.physa.2016.11.033.  Google Scholar

[8]

Y. LiuB. WeiY. X. DuF. Y. Xiao and Y. Deng, Identifying inflential spreaders by weight degree centrality in complex networks, Chaos, 86 (2016), 1-7.  doi: 10.1016/j.chaos.2016.01.030.  Google Scholar

[9]

Y. MorenoM. Nekovee and A. F. Pacheco, Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 1464-3634.  doi: 10.1103/PhysRevE.69.066130.  Google Scholar

[10]

Z. F. PanX. F. Wang and X. Li, Simulation investigation on rumor spreading on scale-free network with tunable clustering, Journal of System Simulation, 18 (2006), 2346-2348.   Google Scholar

[11]

T. RenY. F. WangD. DuM. M. Liu and A. Siddiqi, The guitar chord-generating algorithm based on complex network, Physica A, 443 (2016), 1-13.  doi: 10.1016/j.physa.2015.09.041.  Google Scholar

[12]

T. RenY. F. WangM. M. Liu and Y. J. Xu, Analysis of robustness of urban bus network, Chinese Physics B, 25 (2016).  doi: 10.1088/1674-1056/25/2/020101.  Google Scholar

[13]

Y. SunY. MaF. ZhangY. Ma and W. Shen, Key nodes discovery in large-scale logistics network based on MapReduce, IEEE International Conference on Systems, (2016), 1309-1314.  doi: 10.1109/SMC.2015.233.  Google Scholar

[14]

Z. H. TanJ. Y. NingY. LiuX. W. WangG. M. Yang and W. Yang, ECR Model: An elastic collision-based rumor-propagation model in online social networks, IEEE Access, 4 (2016), 6105-6120.   Google Scholar

[15]

B. X. WangY. F. WenP. F. Ma and P. Hu, A Dynamic-TDMA MAC mechanism for directional networks with a central node, Radio Engineering, (2015), 24-29.   Google Scholar

[16]

J. WeiB. Bu and L. Liang, Estimating the diffusion models of crisis information in micro blog, Journal of Informatics, 6 (2012), 600-610.  doi: 10.1016/j.joi.2012.06.005.  Google Scholar

[17]

H. XieY. Yan and Y. Hou, Dynamical behavior of rumor in online social networks, International Journal of Multimedia and Ubiquitous Engineering, 11 (2016), 125-132.  doi: 10.14257/ijmue.2016.11.3.12.  Google Scholar

[18]

D. H. Zanette, Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 1464-3634.  doi: 10.1103/PhysRevE.65.041908.  Google Scholar

[19]

J. Zeng, C. H. Chan and K. W. Fu, How social media construct "truth" around crisis events: Weibo's rumor management strategies after the 2015 Tianjin blasts, Policy & Internet, in press, (2017). doi: 10.1002/poi3.155.  Google Scholar

[20]

Z. Zhu and Y. Liu, Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering, Complex Systems & Complexity Science, 13 (2016), 74-82.   Google Scholar

Figure 1.  The proposed rumor propagation model
Figure 2.  The number of Gullible, Spreaders and Truth Spreaders in BA network
Figure 3.  Comparison of node importance
Figure 4.  An example of IPA
Figure 5.  The number of spreaders in BA scale-free network
Figure 6.  The number of spreaders in ER network
Figure 7.  The number of spreaders in Facebook network
Figure 8.  The number of spreaders in E-mail communication network
[1]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3141-3161. doi: 10.3934/dcds.2020401

[2]

Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[5]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[6]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[7]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[8]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377

[10]

Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047

[11]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[12]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[13]

Jingni Guo, Junxiang Xu, Zhenggang He, Wei Liao. Research on cascading failure modes and attack strategies of multimodal transport network. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2020159

[14]

Andrey Kovtanyuk, Alexander Chebotarev, Nikolai Botkin, Varvara Turova, Irina Sidorenko, Renée Lampe. Modeling the pressure distribution in a spatially averaged cerebral capillary network. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021016

[15]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[16]

Saeed Assani, Muhammad Salman Mansoor, Faisal Asghar, Yongjun Li, Feng Yang. Efficiency, RTS, and marginal returns from salary on the performance of the NBA players: A parallel DEA network with shared inputs. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021053

[17]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[18]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[19]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[20]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (182)
  • HTML views (510)
  • Cited by (1)

[Back to Top]