
-
Previous Article
Optimal switching signal design with a cost on switching action
- JIMO Home
- This Issue
-
Next Article
Optimal control of Sturm-Liouville type evolution differential inclusions with endpoint constraints
Rumor propagation controlling based on finding important nodes in complex network
1. | School of Business Administration, Northeastern University, Shenyang 110169, China |
2. | Software College, Northeastern University, Shenyang 110169, China |
3. | School of Economics and Management, Tongji University, Shanghai 200092, China |
The rumor propagation analysis and important nodes detection is a hot topic in complex network under crisis situation. The traditional propagation model does not consider enough states, so it cannot intact reflect the real world. In this paper, a new rumor propagation model which considers the Wiseman and the Truth Spreader is proposed based on the Graph Theory. Then, 3 new methods are proposed to find important nodes in the new model. These methods consider the differences between nodes to evaluate the importance of the nodes. Finally, 4 networks are demonstrated to show that the 3 proposed methods are useful to control rumor propagation.
References:
[1] |
K. Berahmand, A. Bouyer and N. Samadi,
A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos, 110 (2018), 41-54.
|
[2] |
D. B. Chen, L. Y. Lv, M. S. Shang, C. Yi and T. Zhou,
Identifying influential nodes in complex networks, Physica A, 391 (2012), 1777-1787.
doi: 10.1016/j.physa.2011.09.017. |
[3] |
D. J. Daley and D. G. Kendall,
Epidemics and rumours, Nature, 204 (1964), 1464-3634.
doi: 10.1038/2041118a0. |
[4] |
R. Granizo, F. R. Blanquez, E. Rebollo and C. A. Platero,
A novel ground fault non-directional selective protection method for ungrounded distribution networks, Energies, 8 (2015), 1291-1316.
doi: 10.3390/en8021291. |
[5] |
V. L. M. Huszar, J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe and L. H. S. Silva,
Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin, Journal of Plankton Research, 660 (2015), 1190-1200.
doi: 10.1093/plankt/fbv084. |
[6] |
M. Kitsak, L. K. Gallos, S. Havlin and F. Liljeros,
Identifying influential spreaders in complex networks, Nature, 6 (2010), 888-893.
|
[7] |
D. Li and J. Ma,
How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Physica A, 46 (2017), 284-292.
doi: 10.1016/j.physa.2016.11.033. |
[8] |
Y. Liu, B. Wei, Y. X. Du, F. Y. Xiao and Y. Deng,
Identifying inflential spreaders by weight degree centrality in complex networks, Chaos, 86 (2016), 1-7.
doi: 10.1016/j.chaos.2016.01.030. |
[9] |
Y. Moreno, M. Nekovee and A. F. Pacheco,
Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 1464-3634.
doi: 10.1103/PhysRevE.69.066130. |
[10] |
Z. F. Pan, X. F. Wang and X. Li,
Simulation investigation on rumor spreading on scale-free network with tunable clustering, Journal of System Simulation, 18 (2006), 2346-2348.
|
[11] |
T. Ren, Y. F. Wang, D. Du, M. M. Liu and A. Siddiqi,
The guitar chord-generating algorithm based on complex network, Physica A, 443 (2016), 1-13.
doi: 10.1016/j.physa.2015.09.041. |
[12] |
T. Ren, Y. F. Wang, M. M. Liu and Y. J. Xu,
Analysis of robustness of urban bus network, Chinese Physics B, 25 (2016).
doi: 10.1088/1674-1056/25/2/020101. |
[13] |
Y. Sun, Y. Ma, F. Zhang, Y. Ma and W. Shen,
Key nodes discovery in large-scale logistics network based on MapReduce, IEEE International Conference on Systems, (2016), 1309-1314.
doi: 10.1109/SMC.2015.233. |
[14] |
Z. H. Tan, J. Y. Ning, Y. Liu, X. W. Wang, G. M. Yang and W. Yang,
ECR Model: An elastic collision-based rumor-propagation model in online social networks, IEEE Access, 4 (2016), 6105-6120.
|
[15] |
B. X. Wang, Y. F. Wen, P. F. Ma and P. Hu,
A Dynamic-TDMA MAC mechanism for directional networks with a central node, Radio Engineering, (2015), 24-29.
|
[16] |
J. Wei, B. Bu and L. Liang,
Estimating the diffusion models of crisis information in micro blog, Journal of Informatics, 6 (2012), 600-610.
doi: 10.1016/j.joi.2012.06.005. |
[17] |
H. Xie, Y. Yan and Y. Hou,
Dynamical behavior of rumor in online social networks, International Journal of Multimedia and Ubiquitous Engineering, 11 (2016), 125-132.
doi: 10.14257/ijmue.2016.11.3.12. |
[18] |
D. H. Zanette,
Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 1464-3634.
doi: 10.1103/PhysRevE.65.041908. |
[19] |
J. Zeng, C. H. Chan and K. W. Fu, How social media construct "truth" around crisis events: Weibo's rumor management strategies after the 2015 Tianjin blasts, Policy & Internet, in press, (2017).
doi: 10.1002/poi3.155. |
[20] |
Z. Zhu and Y. Liu,
Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering, Complex Systems & Complexity Science, 13 (2016), 74-82.
|
show all references
References:
[1] |
K. Berahmand, A. Bouyer and N. Samadi,
A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks, Chaos, 110 (2018), 41-54.
|
[2] |
D. B. Chen, L. Y. Lv, M. S. Shang, C. Yi and T. Zhou,
Identifying influential nodes in complex networks, Physica A, 391 (2012), 1777-1787.
doi: 10.1016/j.physa.2011.09.017. |
[3] |
D. J. Daley and D. G. Kendall,
Epidemics and rumours, Nature, 204 (1964), 1464-3634.
doi: 10.1038/2041118a0. |
[4] |
R. Granizo, F. R. Blanquez, E. Rebollo and C. A. Platero,
A novel ground fault non-directional selective protection method for ungrounded distribution networks, Energies, 8 (2015), 1291-1316.
doi: 10.3390/en8021291. |
[5] |
V. L. M. Huszar, J. C. Nabout, M. O. Appel, J. B. O. Santos, D. S. Abe and L. H. S. Silva,
Environmental and not spatial processes (directional and non-directional) shape the phytoplankton composition and functional groups in a large subtropical river basin, Journal of Plankton Research, 660 (2015), 1190-1200.
doi: 10.1093/plankt/fbv084. |
[6] |
M. Kitsak, L. K. Gallos, S. Havlin and F. Liljeros,
Identifying influential spreaders in complex networks, Nature, 6 (2010), 888-893.
|
[7] |
D. Li and J. Ma,
How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Physica A, 46 (2017), 284-292.
doi: 10.1016/j.physa.2016.11.033. |
[8] |
Y. Liu, B. Wei, Y. X. Du, F. Y. Xiao and Y. Deng,
Identifying inflential spreaders by weight degree centrality in complex networks, Chaos, 86 (2016), 1-7.
doi: 10.1016/j.chaos.2016.01.030. |
[9] |
Y. Moreno, M. Nekovee and A. F. Pacheco,
Dynamics of rumor spreading in complex networks, Physical Review E, 69 (2004), 1464-3634.
doi: 10.1103/PhysRevE.69.066130. |
[10] |
Z. F. Pan, X. F. Wang and X. Li,
Simulation investigation on rumor spreading on scale-free network with tunable clustering, Journal of System Simulation, 18 (2006), 2346-2348.
|
[11] |
T. Ren, Y. F. Wang, D. Du, M. M. Liu and A. Siddiqi,
The guitar chord-generating algorithm based on complex network, Physica A, 443 (2016), 1-13.
doi: 10.1016/j.physa.2015.09.041. |
[12] |
T. Ren, Y. F. Wang, M. M. Liu and Y. J. Xu,
Analysis of robustness of urban bus network, Chinese Physics B, 25 (2016).
doi: 10.1088/1674-1056/25/2/020101. |
[13] |
Y. Sun, Y. Ma, F. Zhang, Y. Ma and W. Shen,
Key nodes discovery in large-scale logistics network based on MapReduce, IEEE International Conference on Systems, (2016), 1309-1314.
doi: 10.1109/SMC.2015.233. |
[14] |
Z. H. Tan, J. Y. Ning, Y. Liu, X. W. Wang, G. M. Yang and W. Yang,
ECR Model: An elastic collision-based rumor-propagation model in online social networks, IEEE Access, 4 (2016), 6105-6120.
|
[15] |
B. X. Wang, Y. F. Wen, P. F. Ma and P. Hu,
A Dynamic-TDMA MAC mechanism for directional networks with a central node, Radio Engineering, (2015), 24-29.
|
[16] |
J. Wei, B. Bu and L. Liang,
Estimating the diffusion models of crisis information in micro blog, Journal of Informatics, 6 (2012), 600-610.
doi: 10.1016/j.joi.2012.06.005. |
[17] |
H. Xie, Y. Yan and Y. Hou,
Dynamical behavior of rumor in online social networks, International Journal of Multimedia and Ubiquitous Engineering, 11 (2016), 125-132.
doi: 10.14257/ijmue.2016.11.3.12. |
[18] |
D. H. Zanette,
Dynamics of rumor propagation on small-world networks, Physical Review E, 65 (2002), 1464-3634.
doi: 10.1103/PhysRevE.65.041908. |
[19] |
J. Zeng, C. H. Chan and K. W. Fu, How social media construct "truth" around crisis events: Weibo's rumor management strategies after the 2015 Tianjin blasts, Policy & Internet, in press, (2017).
doi: 10.1002/poi3.155. |
[20] |
Z. Zhu and Y. Liu,
Simulation study of propagation of rumor in online social network based on scale-free network with tunable clustering, Complex Systems & Complexity Science, 13 (2016), 74-82.
|








[1] |
Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051 |
[2] |
Linhe Zhu, Wenshan Liu. Spatial dynamics and optimization method for a network propagation model in a shifting environment. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1843-1874. doi: 10.3934/dcds.2020342 |
[3] |
Linhe Zhu, Wenshan Liu, Zhengdi Zhang. A theoretical approach to understanding rumor propagation dynamics in a spatially heterogeneous environment. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4059-4092. doi: 10.3934/dcdsb.2020274 |
[4] |
Mario Lefebvre. A stochastic model for computer virus propagation. Journal of Dynamics and Games, 2020, 7 (2) : 163-174. doi: 10.3934/jdg.2020010 |
[5] |
David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161. |
[6] |
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 |
[7] |
Cédric Wolf. A mathematical model for the propagation of a hantavirus in structured populations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1065-1089. doi: 10.3934/dcdsb.2004.4.1065 |
[8] |
Shuo Zhang, Guo Lin. Propagation dynamics in a diffusive SIQR model for childhood diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3241-3259. doi: 10.3934/dcdsb.2021183 |
[9] |
Mahendra Piraveenan, Mikhail Prokopenko, Albert Y. Zomaya. On congruity of nodes and assortative information content in complex networks. Networks and Heterogeneous Media, 2012, 7 (3) : 441-461. doi: 10.3934/nhm.2012.7.441 |
[10] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3141-3161. doi: 10.3934/dcds.2020401 |
[11] |
Jean-Michel Roquejoffre, Juan-Luis Vázquez. Ignition and propagation in an integro-differential model for spherical flames. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 379-387. doi: 10.3934/dcdsb.2002.2.379 |
[12] |
Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235 |
[13] |
Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867 |
[14] |
G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705 |
[15] |
Patrick W. Dondl, Michael Scheutzow. Positive speed of propagation in a semilinear parabolic interface model with unbounded random coefficients. Networks and Heterogeneous Media, 2012, 7 (1) : 137-150. doi: 10.3934/nhm.2012.7.137 |
[16] |
Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. On the minimal speed of front propagation in a model of the Belousov-Zhabotinsky reaction. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1769-1781. doi: 10.3934/dcdsb.2014.19.1769 |
[17] |
Noémi Nagy, Péter L. Simon. Detailed analytic study of the compact pairwise model for SIS epidemic propagation on networks. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 99-115. doi: 10.3934/dcdsb.2019174 |
[18] |
Chang-Yeol Jung, Alex Mahalov. Wave propagation in random waveguides. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 147-159. doi: 10.3934/dcds.2010.28.147 |
[19] |
Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244 |
[20] |
D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]