
-
Previous Article
Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk
- JIMO Home
- This Issue
-
Next Article
Optimal pricing and inventory strategies for introducing a new product based on demand substitution effects
Optimal switching signal design with a cost on switching action
1. | School of Management, Shanghai University, Shanghai, China |
2. | Faculty of Mathematics and Computer Science, Guangdong Ocean University, Zhanjiang, Guangdong, China |
3. | College of Mathematics Science, Chongqing Normal University, Chongqing, China |
In this paper, we consider a particular class of optimal switching problem for the linear-quadratic switched system in discrete time, where an optimal switching sequence is designed to minimize the quadratic performance index of the system with a switching cost. This is a challenging issue and studied only by few papers. First, we introduce a total variation function with respect to the switching sequence to measure the volatile switching action. In order to restrain the switching magnitude, it is added to the cost functional as a penalty. Then, the particular optimal switching problem is formulated. With the positive semi-definiteness of matrices, we construct a series of exact lower bounds of the cost functional at each time and the branch and bound method is applied to search all global optimal solutions. For the comparison between different global optimization methods, some numerical examples are given to show the efficiency of our proposed method.
References:
[1] |
H. Axelsson, Y. Wardi, M. Egerstedt and E. I. Verriest,
Gradient descent approach to optiomal mode scheduling in hybrid dynamical systems, Journal of Optimization Theory and Applications, 136 (2008), 167-186.
doi: 10.1007/s10957-007-9305-y. |
[2] |
S. C. Bengea and R. A. DeCarlo,
Optimal control of switching systems, Automatica, 41 (2005), 11-27.
doi: 10.1016/j.automatica.2004.08.003. |
[3] |
T. M. Caldwell and T. D. Murphey,
Projection-based iterative mode scheduling for switched systems, Nonlinear Analysis: Hybrid Systems, 21 (2016), 59-83.
doi: 10.1016/j.nahs.2015.11.002. |
[4] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.
doi: 10.1016/j.automatica.2007.09.024. |
[5] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Optimal sensor scheduling in continuous time, Dynamic Systems and Applications, 17 (2008), 331-350.
|
[6] |
Z. G. Feng, K. L. Teo and V. Rehbock,
A discrete filled function method for the optimal control of switched systems in discrete time, Optimal Control Applications and Methods, 30 (2009), 585-593.
doi: 10.1002/oca.885. |
[7] |
Z. G. Feng, K. L. Teo and Y. Zhao,
Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.
doi: 10.3934/jimo.2005.1.499. |
[8] |
J. Gao and D. Li,
Linear-quadratic switching control with switching cost, Automatica, 48 (2012), 1138-1143.
doi: 10.1016/j.automatica.2012.03.006. |
[9] |
Z. Gong, C. Liu and Y. Wang,
Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.
doi: 10.3934/jimo.2017042. |
[10] |
D. Görges, M. Izák and S. Liu,
Optimal control and scheduling of switched systems, IEEE Transactions on Automatic Control, 56 (2011), 135-140.
doi: 10.1109/TAC.2010.2085573. |
[11] |
J. F. He, W. Xu, Z. G. Feng and X. Yang,
On the global optimal solution for linear quadratic problems of switched system, Journal of Industrial and Management Optimization, 15 (2019), 817-832.
|
[12] |
M. Kamgarpour and C. Tomlin,
On optimal control of non-autonomous switched systems with a fixed mode sequence, Journal of Global Optimization, 48 (2012), 1177-1181.
doi: 10.1016/j.automatica.2012.03.019. |
[13] |
B. Li and Y. Rong,
Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.
doi: 10.1109/TVT.2018.2846556. |
[14] |
B. Li and Y. Rong,
AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.
doi: 10.1109/TCOMM.2017.2788006. |
[15] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246. |
[16] |
R. Li, K. L. Teo, K. H. Wong and G. R. Duan,
Control parametrization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.
doi: 10.1016/j.mcm.2005.08.012. |
[17] |
C. Liu, Z. Gong, K. L. Teo, J. Sun and L. Caccetta,
Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Analysis: Hybrid Systems, 25 (2017), 1-20.
doi: 10.1016/j.nahs.2017.01.006. |
[18] |
R. Loxton, Q. Lin and K. L. Teo,
Minimizing control variation in nonlinear optimal control, Automatica, 49 (2013), 2652-2664.
doi: 10.1016/j.automatica.2013.05.027. |
[19] |
R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling,
Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.
doi: 10.1016/j.automatica.2008.10.031. |
[20] |
W. Lu, P. Zhu and S. Ferrari,
A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems, IEEE Transactions on Automatic Control, 61 (2016), 3203-3208.
doi: 10.1109/TAC.2015.2509421. |
[21] |
C. Seatzu, D. Corona, A. Giua and A. Bemporad,
Optimal control of continuous-time switched affine systems, IEEE Transactions on Automatic Control, 51 (2006), 726-741.
doi: 10.1109/TAC.2006.875053. |
[22] |
Y. Wardi, M. Egerstedt and M. Hale,
Switched-mode systems: Gradient-descent algorithms with Armijo step sizes, Discrete Event Dynamic Systems, 25 (2015), 571-599.
doi: 10.1007/s10626-014-0198-2. |
[23] |
W. Xu, Z. G. Feng, J. W. Peng and K. F. C. Yiu,
Optimal switching for linear quadratic problem of switched systems in discrete time, Automatica, 78 (2017), 185-193.
doi: 10.1016/j.automatica.2016.12.002. |
[24] |
W. Xu, Z. G. Feng, G. H. Lin and L. Yu,
Optimal scheduling of discrete-time switched linear systems, IMA Journal of Mathematical Control and Information, (2018).
doi: 10.1093/imamci/dny034. |
[25] |
H. Yan, Y. Sun and Y. Zhu,
A linear-quadratic control problem of uncertain discrete-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282.
doi: 10.3934/jimo.2016016. |
[26] |
F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings,
Visual miser: an efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.
doi: 10.3934/jimo.2016.12.781. |
[27] |
J. Zhai, T. Niu, J. Ye and E. Feng,
Optimal control of nonlinear switched system with mixed constraints and its parallel optimization algorithm, Nonlinear Analysis: Hybrid Systems, 25 (2017), 21-40.
doi: 10.1016/j.nahs.2017.02.001. |
show all references
References:
[1] |
H. Axelsson, Y. Wardi, M. Egerstedt and E. I. Verriest,
Gradient descent approach to optiomal mode scheduling in hybrid dynamical systems, Journal of Optimization Theory and Applications, 136 (2008), 167-186.
doi: 10.1007/s10957-007-9305-y. |
[2] |
S. C. Bengea and R. A. DeCarlo,
Optimal control of switching systems, Automatica, 41 (2005), 11-27.
doi: 10.1016/j.automatica.2004.08.003. |
[3] |
T. M. Caldwell and T. D. Murphey,
Projection-based iterative mode scheduling for switched systems, Nonlinear Analysis: Hybrid Systems, 21 (2016), 59-83.
doi: 10.1016/j.nahs.2015.11.002. |
[4] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Hybrid method for a general optimal sensor scheduling problem in discrete time, Automatica, 44 (2008), 1295-1303.
doi: 10.1016/j.automatica.2007.09.024. |
[5] |
Z. G. Feng, K. L. Teo and V. Rehbock,
Optimal sensor scheduling in continuous time, Dynamic Systems and Applications, 17 (2008), 331-350.
|
[6] |
Z. G. Feng, K. L. Teo and V. Rehbock,
A discrete filled function method for the optimal control of switched systems in discrete time, Optimal Control Applications and Methods, 30 (2009), 585-593.
doi: 10.1002/oca.885. |
[7] |
Z. G. Feng, K. L. Teo and Y. Zhao,
Branch and bound method for sensor scheduling in discrete time, Journal of Industrial and Management Optimization, 1 (2005), 499-512.
doi: 10.3934/jimo.2005.1.499. |
[8] |
J. Gao and D. Li,
Linear-quadratic switching control with switching cost, Automatica, 48 (2012), 1138-1143.
doi: 10.1016/j.automatica.2012.03.006. |
[9] |
Z. Gong, C. Liu and Y. Wang,
Optimal control of switched systems with multiple time-delays and a cost on changing control, Journal of Industrial and Management Optimization, 14 (2018), 183-198.
doi: 10.3934/jimo.2017042. |
[10] |
D. Görges, M. Izák and S. Liu,
Optimal control and scheduling of switched systems, IEEE Transactions on Automatic Control, 56 (2011), 135-140.
doi: 10.1109/TAC.2010.2085573. |
[11] |
J. F. He, W. Xu, Z. G. Feng and X. Yang,
On the global optimal solution for linear quadratic problems of switched system, Journal of Industrial and Management Optimization, 15 (2019), 817-832.
|
[12] |
M. Kamgarpour and C. Tomlin,
On optimal control of non-autonomous switched systems with a fixed mode sequence, Journal of Global Optimization, 48 (2012), 1177-1181.
doi: 10.1016/j.automatica.2012.03.019. |
[13] |
B. Li and Y. Rong,
Joint transceiver optimization for wireless information and energy transfer in nonregenerative MIMO relay systems, IEEE Transactions on Vehicular Technology, 67 (2018), 8348-8362.
doi: 10.1109/TVT.2018.2846556. |
[14] |
B. Li and Y. Rong,
AF MIMO relay systems with wireless powered relay node and direct link, IEEE Transactions on Communications, 66 (2018), 1508-1519.
doi: 10.1109/TCOMM.2017.2788006. |
[15] |
B. Li, Y. Rong, J. Sun and K. L. Teo,
A distributionally robust linear receiver design for multi-access space-time block coded MIMO systems, IEEE Transactions on Wireless Communications, 16 (2017), 464-474.
doi: 10.1109/TWC.2016.2625246. |
[16] |
R. Li, K. L. Teo, K. H. Wong and G. R. Duan,
Control parametrization enhancing transform for optimal control of switched systems, Mathematical and Computer Modelling, 43 (2006), 1393-1403.
doi: 10.1016/j.mcm.2005.08.012. |
[17] |
C. Liu, Z. Gong, K. L. Teo, J. Sun and L. Caccetta,
Robust multi-objective optimal switching control arising in 1, 3-propanediol microbial fed-batch process, Nonlinear Analysis: Hybrid Systems, 25 (2017), 1-20.
doi: 10.1016/j.nahs.2017.01.006. |
[18] |
R. Loxton, Q. Lin and K. L. Teo,
Minimizing control variation in nonlinear optimal control, Automatica, 49 (2013), 2652-2664.
doi: 10.1016/j.automatica.2013.05.027. |
[19] |
R. C. Loxton, K. L. Teo, V. Rehbock and W. K. Ling,
Optimal switching instants for a switched-capacitor DC/DC power converter, Automatica, 45 (2009), 973-980.
doi: 10.1016/j.automatica.2008.10.031. |
[20] |
W. Lu, P. Zhu and S. Ferrari,
A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems, IEEE Transactions on Automatic Control, 61 (2016), 3203-3208.
doi: 10.1109/TAC.2015.2509421. |
[21] |
C. Seatzu, D. Corona, A. Giua and A. Bemporad,
Optimal control of continuous-time switched affine systems, IEEE Transactions on Automatic Control, 51 (2006), 726-741.
doi: 10.1109/TAC.2006.875053. |
[22] |
Y. Wardi, M. Egerstedt and M. Hale,
Switched-mode systems: Gradient-descent algorithms with Armijo step sizes, Discrete Event Dynamic Systems, 25 (2015), 571-599.
doi: 10.1007/s10626-014-0198-2. |
[23] |
W. Xu, Z. G. Feng, J. W. Peng and K. F. C. Yiu,
Optimal switching for linear quadratic problem of switched systems in discrete time, Automatica, 78 (2017), 185-193.
doi: 10.1016/j.automatica.2016.12.002. |
[24] |
W. Xu, Z. G. Feng, G. H. Lin and L. Yu,
Optimal scheduling of discrete-time switched linear systems, IMA Journal of Mathematical Control and Information, (2018).
doi: 10.1093/imamci/dny034. |
[25] |
H. Yan, Y. Sun and Y. Zhu,
A linear-quadratic control problem of uncertain discrete-time switched systems, Journal of Industrial and Management Optimization, 13 (2017), 267-282.
doi: 10.3934/jimo.2016016. |
[26] |
F. Yang, K. L. Teo, R. Loxton, V. Rehbock, B. Li, C. Yu and L. Jennings,
Visual miser: an efficient user-friendly visual program for solving optimal control problems, Journal of Industrial and Management Optimization, 12 (2016), 781-810.
doi: 10.3934/jimo.2016.12.781. |
[27] |
J. Zhai, T. Niu, J. Ye and E. Feng,
Optimal control of nonlinear switched system with mixed constraints and its parallel optimization algorithm, Nonlinear Analysis: Hybrid Systems, 25 (2017), 21-40.
doi: 10.1016/j.nahs.2017.02.001. |


Global optimal solution |
Switching times | Performance index | Switching cost | Optimal functional value |
|
(1 4 2 1 3 1 4 2 3 2) | 9 | 40 | 0 | 40 | |
(1 4 2 1 3 1 4 2 1 1) | 8 | 40 | 0 | 40 | |
(1 4 2 1 3 1 4 2 1 1) | 8 | 40 | 8 | 48 | |
(1 1 3 4 4 4 2 1 1 1) | 4 | 45 | 3 | 48 | |
(1 1 3 4 4 4 2 1 1 1) | 4 | 45 | 6 | 51 | |
(2 3 2 2 2 2 1 1 1 1) | 3 | 50 | 6 | 56 | |
(1 1 1 2 2 2 2 2 2 2) | 1 | 59 | 5 | 64 |
Global optimal solution |
Switching times | Performance index | Switching cost | Optimal functional value |
|
(1 4 2 1 3 1 4 2 3 2) | 9 | 40 | 0 | 40 | |
(1 4 2 1 3 1 4 2 1 1) | 8 | 40 | 0 | 40 | |
(1 4 2 1 3 1 4 2 1 1) | 8 | 40 | 8 | 48 | |
(1 1 3 4 4 4 2 1 1 1) | 4 | 45 | 3 | 48 | |
(1 1 3 4 4 4 2 1 1 1) | 4 | 45 | 6 | 51 | |
(2 3 2 2 2 2 1 1 1 1) | 3 | 50 | 6 | 56 | |
(1 1 1 2 2 2 2 2 2 2) | 1 | 59 | 5 | 64 |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
(1 4 2 1 3 1 4 2 3 2) | 40 | 116 | 0.0826s | (1 4 2 1 3 1 4 2 3 2) | 40 | 128 | 0.1055s | |
(1 4 2 1 3 1 4 2 1 1) | (1 4 2 1 3 1 4 2 1 1) | |||||||
(1 4 2 1 3 1 4 2 1 1) | 48 | 144 | 0.1275s | (1 4 2 1 3 1 4 2 1 1) | 48 | 152 | 0.1310s | |
(1 1 3 4 4 4 2 1 1 1) | (1 1 3 4 4 4 2 1 1 1) | |||||||
(1 1 3 4 4 4 2 1 1 1) | 51 | 376 | 0.2371s | (1 1 3 4 4 4 2 1 1 1) | 51 | 392 | 0.2481s | |
(2 3 2 2 2 2 1 1 1 1) | 56 | 440 | 0.2799s | (2 3 2 2 2 2 1 1 1 1) | 56 | 444 | 0.2806s | |
(1 1 1 2 2 2 2 2 2 2) | 64 | 360 | 0.2280s | (1 1 1 2 2 2 2 2 2 2) | 64 | 372 | 0.2346s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
(1 4 2 1 3 1 4 2 3 2) | 40 | 116 | 0.0826s | (1 4 2 1 3 1 4 2 3 2) | 40 | 128 | 0.1055s | |
(1 4 2 1 3 1 4 2 1 1) | (1 4 2 1 3 1 4 2 1 1) | |||||||
(1 4 2 1 3 1 4 2 1 1) | 48 | 144 | 0.1275s | (1 4 2 1 3 1 4 2 1 1) | 48 | 152 | 0.1310s | |
(1 1 3 4 4 4 2 1 1 1) | (1 1 3 4 4 4 2 1 1 1) | |||||||
(1 1 3 4 4 4 2 1 1 1) | 51 | 376 | 0.2371s | (1 1 3 4 4 4 2 1 1 1) | 51 | 392 | 0.2481s | |
(2 3 2 2 2 2 1 1 1 1) | 56 | 440 | 0.2799s | (2 3 2 2 2 2 1 1 1 1) | 56 | 444 | 0.2806s | |
(1 1 1 2 2 2 2 2 2 2) | 64 | 360 | 0.2280s | (1 1 1 2 2 2 2 2 2 2) | 64 | 372 | 0.2346s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (1 4 2 1 1 1 1 1 3 1) | 55 | 8 | 0.0115s | (1 4 2 1 3 1 4 2 3 2) | 40 | 2796 | 10.4855s |
(1 4 2 1 3 1 4 2 1 1) | ||||||||
(1 4 2 1 1 1 1 1 3 1) | 60 | 8 | 0.0115s | (1 4 2 1 3 1 4 2 1 1) | 48 | 2948 | 10.7044s | |
(1 1 3 4 4 4 2 1 1 1) | ||||||||
(1 1 3 4 4 4 2 1 1 1) | 51 | 4 | 0.0091s | (1 1 3 4 4 4 2 1 1 1) | 51 | 2768 | 10.4657s | |
(1 1 3 4 4 4 2 1 1 1) | 57 | 12 | 0.1379s | (2 3 2 2 2 2 1 1 1 1) | 56 | 2504 | 10.3680s | |
(1 1 3 4 4 4 2 2 2 2) | ||||||||
(1 1 3 4 4 4 4 3 3 3) | 70 | 4 | 0.0091s | (1 1 1 2 2 2 2 2 2 2) | 64 | 2028 | 9.6311s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (1 4 2 1 1 1 1 1 3 1) | 55 | 8 | 0.0115s | (1 4 2 1 3 1 4 2 3 2) | 40 | 2796 | 10.4855s |
(1 4 2 1 3 1 4 2 1 1) | ||||||||
(1 4 2 1 1 1 1 1 3 1) | 60 | 8 | 0.0115s | (1 4 2 1 3 1 4 2 1 1) | 48 | 2948 | 10.7044s | |
(1 1 3 4 4 4 2 1 1 1) | ||||||||
(1 1 3 4 4 4 2 1 1 1) | 51 | 4 | 0.0091s | (1 1 3 4 4 4 2 1 1 1) | 51 | 2768 | 10.4657s | |
(1 1 3 4 4 4 2 1 1 1) | 57 | 12 | 0.1379s | (2 3 2 2 2 2 1 1 1 1) | 56 | 2504 | 10.3680s | |
(1 1 3 4 4 4 2 2 2 2) | ||||||||
(1 1 3 4 4 4 4 3 3 3) | 70 | 4 | 0.0091s | (1 1 1 2 2 2 2 2 2 2) | 64 | 2028 | 9.6311s |
Global optimal solution |
Switching times | Performance index | Switching cost | Optimal functional value |
|
0 | (3 4 2 3 4 1 1 3 3 4) | 7 | 5.1452 | 0 | 5.1452 |
0.1 | (3 4 2 4 1 4 4 4 4 4) | 5 | 5.2376 | 0.5 | 5.7376 |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 3 | 5.6759 | 1.5 | 7.1759 |
2 | (2 3 3 2 4 4 4 4 4 4) | 3 | 5.6759 | 6 | 11.6759 |
5 | (2 3 3 3 4 4 4 4 4 4) | 2 | 7.7973 | 10 | 17.7973 |
10 | (4 4 4 4 4 4 4 4 4 4) | 0 | 18.5961 | 0 | 18.5961 |
Global optimal solution |
Switching times | Performance index | Switching cost | Optimal functional value |
|
0 | (3 4 2 3 4 1 1 3 3 4) | 7 | 5.1452 | 0 | 5.1452 |
0.1 | (3 4 2 4 1 4 4 4 4 4) | 5 | 5.2376 | 0.5 | 5.7376 |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 3 | 5.6759 | 1.5 | 7.1759 |
2 | (2 3 3 2 4 4 4 4 4 4) | 3 | 5.6759 | 6 | 11.6759 |
5 | (2 3 3 3 4 4 4 4 4 4) | 2 | 7.7973 | 10 | 17.7973 |
10 | (4 4 4 4 4 4 4 4 4 4) | 0 | 18.5961 | 0 | 18.5961 |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 164 | 0.5458s | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 168 | 0.6742s |
0.1 | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 108 | 0.6379s | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 64 | 0.7968s |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 96 | 0.7146s | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 120 | 0.9573s |
2 | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 132 | 1.5675s | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 172 | 1.7968s |
5 | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 36 | 1.2749s | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 36 | 1.6238s |
10 | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 24 | 0.8772s | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 68 | 1.2210s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 164 | 0.5458s | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 168 | 0.6742s |
0.1 | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 108 | 0.6379s | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 64 | 0.7968s |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 96 | 0.7146s | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 120 | 0.9573s |
2 | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 132 | 1.5675s | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 172 | 1.7968s |
5 | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 36 | 1.2749s | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 36 | 1.6238s |
10 | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 24 | 0.8772s | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 68 | 1.2210s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (2 3 3 2 4 1 4 3 4 4) | 5.5347 | 12 | 0.0679s | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 660 | 85.3819s |
0.1 | (2 3 3 2 4 1 4 4 4 4) | 6.1436 | 4 | 0.0615s | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 568 | 86.7247s |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 4 | 0.0618s | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 508 | 87.3288s |
2 | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 24 | 0.1131s | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 408 | 86.0455s |
5 | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 4 | 0.0797s | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 372 | 84.8442s |
10 | (2 3 3 3 4 4 4 4 4 4) | 27.7973 | 4 | 0.2317s | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 332 | 83.2846s |
Approximate B&B method | Exact B&B method | |||||||
Searching times | Time | Searching times | Time | |||||
0 | (2 3 3 2 4 1 4 3 4 4) | 5.5347 | 12 | 0.0679s | (3 4 2 3 4 1 1 3 3 4) | 5.1452 | 660 | 85.3819s |
0.1 | (2 3 3 2 4 1 4 4 4 4) | 6.1436 | 4 | 0.0615s | (3 4 2 4 1 4 4 4 4 4) | 5.7376 | 568 | 86.7247s |
0.5 | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 4 | 0.0618s | (2 3 3 2 4 4 4 4 4 4) | 7.1759 | 508 | 87.3288s |
2 | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 24 | 0.1131s | (2 3 3 2 4 4 4 4 4 4) | 11.6759 | 408 | 86.0455s |
5 | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 4 | 0.0797s | (2 3 3 3 4 4 4 4 4 4) | 17.7973 | 372 | 84.8442s |
10 | (2 3 3 3 4 4 4 4 4 4) | 27.7973 | 4 | 0.2317s | (4 4 4 4 4 4 4 4 4 4) | 18.5961 | 332 | 83.2846s |
[1] |
Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443 |
[2] |
Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723 |
[3] |
Gechun Liang, Wei Wei. Optimal switching at Poisson random intervention times. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1483-1505. doi: 10.3934/dcdsb.2016008 |
[4] |
Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control & Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042 |
[5] |
Fabian Rüffler, Volker Mehrmann, Falk M. Hante. Optimal model switching for gas flow in pipe networks. Networks & Heterogeneous Media, 2018, 13 (4) : 641-661. doi: 10.3934/nhm.2018029 |
[6] |
Lin Xu, Rongming Wang, Dingjun Yao. Optimal stochastic investment games under Markov regime switching market. Journal of Industrial & Management Optimization, 2014, 10 (3) : 795-815. doi: 10.3934/jimo.2014.10.795 |
[7] |
Fabio Bagagiolo. Optimal control of finite horizon type for a multidimensional delayed switching system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 239-264. doi: 10.3934/dcdsb.2005.5.239 |
[8] |
Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764 |
[9] |
Fredi Tröltzsch, Daniel Wachsmuth. On the switching behavior of sparse optimal controls for the one-dimensional heat equation. Mathematical Control & Related Fields, 2018, 8 (1) : 135-153. doi: 10.3934/mcrf.2018006 |
[10] |
Jiaqin Wei. Time-inconsistent optimal control problems with regime-switching. Mathematical Control & Related Fields, 2017, 7 (4) : 585-622. doi: 10.3934/mcrf.2017022 |
[11] |
Jie Yu, Qing Zhang. Optimal trend-following trading rules under a three-state regime switching model. Mathematical Control & Related Fields, 2012, 2 (1) : 81-100. doi: 10.3934/mcrf.2012.2.81 |
[12] |
Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315 |
[13] |
Baojun Bian, Nan Wu, Harry Zheng. Optimal liquidation in a finite time regime switching model with permanent and temporary pricing impact. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1401-1420. doi: 10.3934/dcdsb.2016002 |
[14] |
Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-17. doi: 10.3934/jimo.2019050 |
[15] |
Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132 |
[16] |
Lin Xu, Dingjun Yao, Gongpin Cheng. Optimal investment and dividend for an insurer under a Markov regime switching market with high gain tax. Journal of Industrial & Management Optimization, 2020, 16 (1) : 325-356. doi: 10.3934/jimo.2018154 |
[17] |
Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016 |
[18] |
V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55 |
[19] |
Giuseppe Buttazzo, Serena Guarino Lo Bianco, Fabrizio Oliviero. Optimal location problems with routing cost. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1301-1317. doi: 10.3934/dcds.2014.34.1301 |
[20] |
Liuyang Yuan, Zhongping Wan, Qiuhua Tang. A criterion for an approximation global optimal solution based on the filled functions. Journal of Industrial & Management Optimization, 2016, 12 (1) : 375-387. doi: 10.3934/jimo.2016.12.375 |
2018 Impact Factor: 1.025
Tools
Article outline
Figures and Tables
[Back to Top]