# American Institute of Mathematical Sciences

November  2020, 16(6): 2581-2602. doi: 10.3934/jimo.2019071

## Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk

 1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, China 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 3 Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

* Corresponding author: Hailin Sun

Received  December 2017 Revised  March 2019 Published  July 2019

Fund Project: The work is supported by National Natural Science Foundation of China grant 11871276, 11571178 and 11571056

A portfolio optimization model with relaxed second order stochastic dominance (SSD) constraints is presented. The proposed model uses Conditional Value at Risk (CVaR) constraints at probability level $\beta\in(0,1)$ to relax SSD constraints. The relaxation is justified by theoretical convergence results based on sample average approximation (SAA) method when sample size $N\to\infty$ and CVaR probability level $\beta$ tends to 1. SAA method is used to reduce infinite number of inequalities of SSD constraints to finite ones and also to calculate the expectation value. The proposed relaxation on the SSD constraints in portfolio optimization problem is achieved when the probability level $\beta$ of CVaR takes value less than but close to 1, and the model can then be solved by cutting plane method. The performance and characteristics of the portfolios constructed by solving the proposed model are tested empirically on three sets of market data, and the experimental results are analyzed and discussed. Furthermore, it is shown that with appropriate choices of CVaR probability level $\beta$, the constructed portfolios are sparse and outperform the portfolios constructed by solving portfolio optimization problems with SSD constraints, with either index portfolios or mean-variance (MV) portfolios as benchmarks.

Citation: Meng Xue, Yun Shi, Hailin Sun. Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2581-2602. doi: 10.3934/jimo.2019071
##### References:

show all references

##### References:
In-sample back testing with NDX data with NDX index as benchmark
NDX: ex-post compounded daily returns (01/06/2016 - 30/9/2016), index returns as benchmark
NDX: ex-post compounded daily returns (01/06/2016 - 30/9/2016), MV returns as benchmark
S&P 500: ex-post compounded daily returns (01/06/2016 - 30/9/2016), index returns as benchmark
S&P 500: ex-post compounded daily returns (01/06/2016 - 30/9/2016), MV returns as benchmark
FTSE 100: ex-post compounded daily returns (01/06/2016 - 30/9/2016), index returns as benchmark
FTSE 100: ex-post compounded daily returns (01/06/2016 - 30/9/2016), MV returns as benchmark
NDX: average daily return, standard deviation, Sharpe Ratio, Sortino Ratio
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0009 0.0088 0.1030 0.1389 SSD 0.0032 0.0118 0.2717 0.4501 $CVaR_ {\beta=0.9}$ 0.0033 0.0118 0.2784 0.4670 $CVaR_{\beta=0.8}$ 0.0032 0.0117 0.2724 0.4486 $CVaR_{\beta=0.7}$ 0.0033 0.0119 0.2810 0.4652 Benchmark: MV 0.0005 0.0078 0.0658 0.0841 SSD 0.0026 0.0102 0.2545 0.4129 $CVaR_ {\beta=0.9}$ 0.0027 0.0118 0.2696 0.4442 $CVaR_{\beta=0.8}$ 0.0030 0.0117 0.2931 0.4916 $CVaR_{\beta=0.7}$ 0.0030 0.0102 0.2943 0.5004
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0009 0.0088 0.1030 0.1389 SSD 0.0032 0.0118 0.2717 0.4501 $CVaR_ {\beta=0.9}$ 0.0033 0.0118 0.2784 0.4670 $CVaR_{\beta=0.8}$ 0.0032 0.0117 0.2724 0.4486 $CVaR_{\beta=0.7}$ 0.0033 0.0119 0.2810 0.4652 Benchmark: MV 0.0005 0.0078 0.0658 0.0841 SSD 0.0026 0.0102 0.2545 0.4129 $CVaR_ {\beta=0.9}$ 0.0027 0.0118 0.2696 0.4442 $CVaR_{\beta=0.8}$ 0.0030 0.0117 0.2931 0.4916 $CVaR_{\beta=0.7}$ 0.0030 0.0102 0.2943 0.5004
S&P 500: average daily return, standard deviation, Sharpe Ratio, Sortino Ratio
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0004 0.0079 0.0534 0.0705 SSD 0.0017 0.0112 0.1490 0.2264 $CVaR_ {\beta=0.9}$ 0.0018 0.0111 0.1606 0.2444 $CVaR_{\beta=0.8}$ 0.0016 0.0114 0.1442 0.2171 $CVaR_{\beta=0.7}$ 0.0017 0.0115 0.1477 0.2241 Benchmark: MV 0.0003 0.0060 0.0421 0.0573 SSD 0.0009 0.0110 0.0802 0.1103 $CVaR_ {\beta=0.9}$ 0.0012 0.0110 0.1086 0.1517 $CVaR_{\beta=0.8}$ 0.0013 0.0107 0.1196 0.1702 $CVaR_{\beta=0.7}$ 0.0015 0.0110 0.1383 0.2001
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0004 0.0079 0.0534 0.0705 SSD 0.0017 0.0112 0.1490 0.2264 $CVaR_ {\beta=0.9}$ 0.0018 0.0111 0.1606 0.2444 $CVaR_{\beta=0.8}$ 0.0016 0.0114 0.1442 0.2171 $CVaR_{\beta=0.7}$ 0.0017 0.0115 0.1477 0.2241 Benchmark: MV 0.0003 0.0060 0.0421 0.0573 SSD 0.0009 0.0110 0.0802 0.1103 $CVaR_ {\beta=0.9}$ 0.0012 0.0110 0.1086 0.1517 $CVaR_{\beta=0.8}$ 0.0013 0.0107 0.1196 0.1702 $CVaR_{\beta=0.7}$ 0.0015 0.0110 0.1383 0.2001
FTSE 100: average daily return, standard deviation, Sharpe Ratio, Sortino Ratio
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0012 0.0112 0.1080 0.1685 SSD 0.0017 0.0158 0.1094 0.1848 $CVaR_ {\beta=0.9}$ 0.0017 0.0155 0.1099 0.1836 $CVaR_{\beta=0.8}$ 0.0020 0.0157 0.1254 0.2131 $CVaR_{\beta=0.7}$ 0.0021 0.0164 0.1269 0.2185 Benchmark: MV 0.0018 0.0095 0.1901 0.3418 SSD 0.0023 0.0141 0.1606 0.2925 $CVaR_ {\beta=0.9}$ 0.0021 0.0134 0.1568 0.2747 $CVaR_{\beta=0.8}$ 0.0021 0.0136 0.1578 0.2755 $CVaR_{\beta=0.7}$ 0.0024 0.0141 0.1703 0.3058
 mean std Sharpe Ratio Sortino Ratio Benchmark: index 0.0012 0.0112 0.1080 0.1685 SSD 0.0017 0.0158 0.1094 0.1848 $CVaR_ {\beta=0.9}$ 0.0017 0.0155 0.1099 0.1836 $CVaR_{\beta=0.8}$ 0.0020 0.0157 0.1254 0.2131 $CVaR_{\beta=0.7}$ 0.0021 0.0164 0.1269 0.2185 Benchmark: MV 0.0018 0.0095 0.1901 0.3418 SSD 0.0023 0.0141 0.1606 0.2925 $CVaR_ {\beta=0.9}$ 0.0021 0.0134 0.1568 0.2747 $CVaR_{\beta=0.8}$ 0.0021 0.0136 0.1578 0.2755 $CVaR_{\beta=0.7}$ 0.0024 0.0141 0.1703 0.3058
Average, minimum and maximum of daily traded basket sizes of different models with both benchmarks in three data sets
 NDX (100) Index MV avg. min. max. avg. min. max. SSD 4.60 3 9 5.55 3 9 $CVaR_{\beta = 0.9}$ 4.65 3 10 5.53 2 9 $CVaR_{\beta = 0.8}$ 4.65 3 10 5.51 2 8 $CVaR_{\beta = 0.7}$ 4.64 3 9 5.50 3 8 FTSE (100) Index MV avg. min. max. avg. min. max. SSD 4.05 2 9 5.16 2 9 $CVaR_{\beta = 0.9}$ 3.98 2 9 5.11 2 9 $CVaR_{\beta = 0.8}$ 3.90 2 8 5.01 2 8 $CVaR_{\beta = 0.7}$ 3.91 3 9 5.17 2 9 S&P (500) Index MV avg. min. max. avg. min. max. SSD 5.87 3 10 6.62 4 11 $CVaR_{\beta = 0.9}$ 6.07 3 11 6.49 3 12 $CVaR_{\beta = 0.8}$ 6.07 3 12 6.70 4 12 $CVaR_{\beta = 0.7}$ 6.30 3 11 6.74 4 12
 NDX (100) Index MV avg. min. max. avg. min. max. SSD 4.60 3 9 5.55 3 9 $CVaR_{\beta = 0.9}$ 4.65 3 10 5.53 2 9 $CVaR_{\beta = 0.8}$ 4.65 3 10 5.51 2 8 $CVaR_{\beta = 0.7}$ 4.64 3 9 5.50 3 8 FTSE (100) Index MV avg. min. max. avg. min. max. SSD 4.05 2 9 5.16 2 9 $CVaR_{\beta = 0.9}$ 3.98 2 9 5.11 2 9 $CVaR_{\beta = 0.8}$ 3.90 2 8 5.01 2 8 $CVaR_{\beta = 0.7}$ 3.91 3 9 5.17 2 9 S&P (500) Index MV avg. min. max. avg. min. max. SSD 5.87 3 10 6.62 4 11 $CVaR_{\beta = 0.9}$ 6.07 3 11 6.49 3 12 $CVaR_{\beta = 0.8}$ 6.07 3 12 6.70 4 12 $CVaR_{\beta = 0.7}$ 6.30 3 11 6.74 4 12
 [1] Yongchao Liu, Hailin Sun, Huifu Xu. An approximation scheme for stochastic programs with second order dominance constraints. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 473-490. doi: 10.3934/naco.2016021 [2] Suxiang He, Pan Zhang, Xiao Hu, Rong Hu. A sample average approximation method based on a D-gap function for stochastic variational inequality problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 977-987. doi: 10.3934/jimo.2014.10.977 [3] Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial & Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1 [4] Mingzheng Wang, M. Montaz Ali, Guihua Lin. Sample average approximation method for stochastic complementarity problems with applications to supply chain supernetworks. Journal of Industrial & Management Optimization, 2011, 7 (2) : 317-345. doi: 10.3934/jimo.2011.7.317 [5] Liu Yang, Xiaojiao Tong, Yao Xiong, Feifei Shen. A smoothing SAA algorithm for a portfolio choice model based on second-order stochastic dominance measures. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1171-1185. doi: 10.3934/jimo.2018198 [6] Xiaojun Chen, Guihua Lin. CVaR-based formulation and approximation method for stochastic variational inequalities. Numerical Algebra, Control & Optimization, 2011, 1 (1) : 35-48. doi: 10.3934/naco.2011.1.35 [7] Yufei Sun, Ee Ling Grace Aw, Bin Li, Kok Lay Teo, Jie Sun. CVaR-based robust models for portfolio selection. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1861-1871. doi: 10.3934/jimo.2019032 [8] Zhilin Kang, Xingyi Li, Zhongfei Li. Mean-CVaR portfolio selection model with ambiguity in distribution and attitude. Journal of Industrial & Management Optimization, 2020, 16 (6) : 3065-3081. doi: 10.3934/jimo.2019094 [9] Martin Redmann, Peter Benner. Approximation and model order reduction for second order systems with Levy-noise. Conference Publications, 2015, 2015 (special) : 945-953. doi: 10.3934/proc.2015.0945 [10] Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841 [11] Xueting Cui, Xiaoling Sun, Dan Sha. An empirical study on discrete optimization models for portfolio selection. Journal of Industrial & Management Optimization, 2009, 5 (1) : 33-46. doi: 10.3934/jimo.2009.5.33 [12] Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences & Engineering, 2017, 14 (1) : 127-141. doi: 10.3934/mbe.2017009 [13] Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933 [14] Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019132 [15] Qiyu Wang, Hailin Sun. Sparse markowitz portfolio selection by using stochastic linear complementarity approach. Journal of Industrial & Management Optimization, 2018, 14 (2) : 541-559. doi: 10.3934/jimo.2017059 [16] Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020040 [17] Martha Garlick, James Powell, David Eyre, Thomas Robbins. Mathematically modeling PCR: An asymptotic approximation with potential for optimization. Mathematical Biosciences & Engineering, 2010, 7 (2) : 363-384. doi: 10.3934/mbe.2010.7.363 [18] Nikolai Dokuchaev. On strong causal binomial approximation for stochastic processes. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1549-1562. doi: 10.3934/dcdsb.2014.19.1549 [19] Ariadna Farrés, Àngel Jorba. On the high order approximation of the centre manifold for ODEs. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 977-1000. doi: 10.3934/dcdsb.2010.14.977 [20] Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023

2019 Impact Factor: 1.366

## Tools

Article outline

Figures and Tables