• Previous Article
    Admission control for finite capacity queueing model with general retrial times and state-dependent rates
  • JIMO Home
  • This Issue
  • Next Article
    Portfolio optimization with relaxation of stochastic second order dominance constraints via conditional value at risk
November  2020, 16(6): 2603-2623. doi: 10.3934/jimo.2019072

Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level

1. 

Department of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China

2. 

College of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, China

3. 

Department of Mathematics and Center for Financial Engineering, Soochow University, Suzhou 215006, China

* Corresponding author: Yinghui Dong

Received  February 2018 Revised  March 2019 Published  July 2019

Fund Project: The authors thank the anonymous referees for valuable comments to improve the earlier version of the paper. This work is supported by the NSF of Jiangsu Province (Grant No. BK20170064), the NNSF of China (Grant No. 11771320), QingLan Project, the scholarship of Jiangsu Overseas Visiting Scholar Program, Suzhou Key Laboratory for Big Data and Information Service (SZS201813) and the Graduate Innovation Program (Grant No. KYCX17-2059) of Jiangsu Province of China

In this paper, we investigate the valuation of dynamic fund protections under the assumption that the market value of the basic fund and the protection level follow regime-switching processes with jumps. The price of the dynamic fund protection (DFP) is associated with the Laplace transform of the first passage time. We derive the explicit formula for the Laplace transform of the DFP under the regime-switching, hyper-exponential jump-diffusion process. By using the Gaver-Stehfest algorithm, we present some numerical results for the price of the DFP.

Citation: Chao Xu, Yinghui Dong, Zhaolu Tian, Guojing Wang. Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2603-2623. doi: 10.3934/jimo.2019072
References:
[1]

J. Buffington and R. J. Elliott, American options with regime switching, International Journal of Theoretical and Applied Finance, 5 (2002), 497-514.  doi: 10.1142/S0219024902001523.  Google Scholar

[2]

C. C. ChangY. H. Lian and M. H. Tsay, Pricing dynamic guaranteed funds under a double exponential jump diffusion model, Academia Economic Papers, 40 (2012), 269-306.   Google Scholar

[3]

Y. H. Dong, Pricing dynamic guaranteed funds with stochastic barrier under Vasicek interest rate model, hinese Journal of Applied Probability and Statistics, 29 (2013), 237-245.   Google Scholar

[4]

Y. H. DongG. J. Wang and R. Wu, Pricing the zero-coupon bond and its fair premium under a structural credit risk model with jumps, Journal of Applied Probability, 48 (2011), 404-419.  doi: 10.1239/jap/1308662635.  Google Scholar

[5]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag, Berlin-Heidelberg-New York, 1994.  Google Scholar

[6]

R. J. ElliottC. Leunglung and T. K. Siu, Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.  doi: 10.1007/s10436-005-0013-z.  Google Scholar

[7]

H. K. Fung and L. K. Li, Pricing discrete dynamic fund protections, North American Actuarial Journal, 7 (2003), 23-31.  doi: 10.1080/10920277.2003.10596115.  Google Scholar

[8]

H. U. Gerber and G. Pafumi, Pricing dynamic investment fund protection, North American Actuarial Journal, 4 (2000), 28-37.  doi: 10.1080/10920277.2000.10595894.  Google Scholar

[9]

H. U. Gerber and E. S. Shiu, From ruin theory to pricing reset guarantees and perpetual put options, Insurance: Mathematics and Economics, 24 (1999), 3-14.  doi: 10.1016/S0167-6687(98)00033-X.  Google Scholar

[10]

H. U. Gerber and E. S. Shiu, Pricing perpetual fund protection with withdrawal option, North American Actuarial Journal, 7 (2003), 60-77.  doi: 10.1080/10920277.2003.10596087.  Google Scholar

[11]

H. U. Gerber and E. S. W. Shiu, The time value of ruin in a Sparre Andersen model, North American Actuarial Journal, 9 (2005), 49-84.  doi: 10.1080/10920277.2005.10596197.  Google Scholar

[12]

X. Guo, Information and option pricings, Quantitative Finance, 1 (2001), 38-44.  doi: 10.1080/713665550.  Google Scholar

[13]

J. D. Hamilton, Rational-expectations econometric analysis of changes in regime: An investigation of the terms tructure of interest rates, Journal of Economic Dynamics and Control, 12 (1998), 385-423.  doi: 10.1016/0165-1889(88)90047-4.  Google Scholar

[14]

M. R. Hardy, A regime-switching model of long-term stock returns, North American Actuarial Journal, 5 (2001), 41-53.  doi: 10.1080/10920277.2001.10595984.  Google Scholar

[15]

J. Imai and P. P. Boyle, Dynamic fund protection, North American Actuarial Journal, 5 (2001), 31-47.  doi: 10.1080/10920277.2001.10595996.  Google Scholar

[16]

Z. JinL. Y. QianW. Wang and R. M. Wang, Pricing dynamic fund protections with regime switching, Journal of Computational and Applied Mathematics, 297 (2016), 13-25.  doi: 10.1016/j.cam.2015.11.012.  Google Scholar

[17]

S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.   Google Scholar

[18]

S. G. Kou and H. Wang, First passage times of a jump diffusion process, Advance in Applied Probability, 35 (2003), 504-531.  doi: 10.1239/aap/1051201658.  Google Scholar

[19]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model., Management Science, 50 (2004), 1178-1192.   Google Scholar

[20]

V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns, Journal of Finance, 48 (1993), 1969-1984.  doi: 10.1111/j.1540-6261.1993.tb05137.x.  Google Scholar

[21]

C. C. SiuS. C. P. Yam and H. Yang, Valuing equity-linked death benefits in a regime-switching framework, ASTIN Bulletin, 45 (2015), 355-395.  doi: 10.1017/asb.2014.32.  Google Scholar

[22]

H. Y. Wong and C. M. Chan, Lookback options and dynamic fund protection under multiscale stochastic volatility, Insurance: Mathematics and Economics, 40 (2007), 357-385.  doi: 10.1016/j.insmatheco.2006.05.006.  Google Scholar

[23]

H. Y. Wong and K. W. Lam, Valuation of discrete dynamic fund protection under Lévy processes, North American Actuarial Journal, 13 (2009), 202-216.  doi: 10.1080/10920277.2009.10597548.  Google Scholar

[24]

C. Xu and Y. H. Dong, Pricing dynamic fund protections under a stochastic boundary, Journal of Suzhou University of Science and Technology, 2 (2018), 21-25.   Google Scholar

show all references

References:
[1]

J. Buffington and R. J. Elliott, American options with regime switching, International Journal of Theoretical and Applied Finance, 5 (2002), 497-514.  doi: 10.1142/S0219024902001523.  Google Scholar

[2]

C. C. ChangY. H. Lian and M. H. Tsay, Pricing dynamic guaranteed funds under a double exponential jump diffusion model, Academia Economic Papers, 40 (2012), 269-306.   Google Scholar

[3]

Y. H. Dong, Pricing dynamic guaranteed funds with stochastic barrier under Vasicek interest rate model, hinese Journal of Applied Probability and Statistics, 29 (2013), 237-245.   Google Scholar

[4]

Y. H. DongG. J. Wang and R. Wu, Pricing the zero-coupon bond and its fair premium under a structural credit risk model with jumps, Journal of Applied Probability, 48 (2011), 404-419.  doi: 10.1239/jap/1308662635.  Google Scholar

[5]

R. J. Elliott, L. Aggoun and J. B. Moore, Hidden Markov Models: Estimation and Control, Springer-Verlag, Berlin-Heidelberg-New York, 1994.  Google Scholar

[6]

R. J. ElliottC. Leunglung and T. K. Siu, Option pricing and Esscher transform under regime switching, Annals of Finance, 1 (2005), 423-432.  doi: 10.1007/s10436-005-0013-z.  Google Scholar

[7]

H. K. Fung and L. K. Li, Pricing discrete dynamic fund protections, North American Actuarial Journal, 7 (2003), 23-31.  doi: 10.1080/10920277.2003.10596115.  Google Scholar

[8]

H. U. Gerber and G. Pafumi, Pricing dynamic investment fund protection, North American Actuarial Journal, 4 (2000), 28-37.  doi: 10.1080/10920277.2000.10595894.  Google Scholar

[9]

H. U. Gerber and E. S. Shiu, From ruin theory to pricing reset guarantees and perpetual put options, Insurance: Mathematics and Economics, 24 (1999), 3-14.  doi: 10.1016/S0167-6687(98)00033-X.  Google Scholar

[10]

H. U. Gerber and E. S. Shiu, Pricing perpetual fund protection with withdrawal option, North American Actuarial Journal, 7 (2003), 60-77.  doi: 10.1080/10920277.2003.10596087.  Google Scholar

[11]

H. U. Gerber and E. S. W. Shiu, The time value of ruin in a Sparre Andersen model, North American Actuarial Journal, 9 (2005), 49-84.  doi: 10.1080/10920277.2005.10596197.  Google Scholar

[12]

X. Guo, Information and option pricings, Quantitative Finance, 1 (2001), 38-44.  doi: 10.1080/713665550.  Google Scholar

[13]

J. D. Hamilton, Rational-expectations econometric analysis of changes in regime: An investigation of the terms tructure of interest rates, Journal of Economic Dynamics and Control, 12 (1998), 385-423.  doi: 10.1016/0165-1889(88)90047-4.  Google Scholar

[14]

M. R. Hardy, A regime-switching model of long-term stock returns, North American Actuarial Journal, 5 (2001), 41-53.  doi: 10.1080/10920277.2001.10595984.  Google Scholar

[15]

J. Imai and P. P. Boyle, Dynamic fund protection, North American Actuarial Journal, 5 (2001), 31-47.  doi: 10.1080/10920277.2001.10595996.  Google Scholar

[16]

Z. JinL. Y. QianW. Wang and R. M. Wang, Pricing dynamic fund protections with regime switching, Journal of Computational and Applied Mathematics, 297 (2016), 13-25.  doi: 10.1016/j.cam.2015.11.012.  Google Scholar

[17]

S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48 (2002), 1086-1101.   Google Scholar

[18]

S. G. Kou and H. Wang, First passage times of a jump diffusion process, Advance in Applied Probability, 35 (2003), 504-531.  doi: 10.1239/aap/1051201658.  Google Scholar

[19]

S. G. Kou and H. Wang, Option pricing under a double exponential jump diffusion model., Management Science, 50 (2004), 1178-1192.   Google Scholar

[20]

V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset returns, Journal of Finance, 48 (1993), 1969-1984.  doi: 10.1111/j.1540-6261.1993.tb05137.x.  Google Scholar

[21]

C. C. SiuS. C. P. Yam and H. Yang, Valuing equity-linked death benefits in a regime-switching framework, ASTIN Bulletin, 45 (2015), 355-395.  doi: 10.1017/asb.2014.32.  Google Scholar

[22]

H. Y. Wong and C. M. Chan, Lookback options and dynamic fund protection under multiscale stochastic volatility, Insurance: Mathematics and Economics, 40 (2007), 357-385.  doi: 10.1016/j.insmatheco.2006.05.006.  Google Scholar

[23]

H. Y. Wong and K. W. Lam, Valuation of discrete dynamic fund protection under Lévy processes, North American Actuarial Journal, 13 (2009), 202-216.  doi: 10.1080/10920277.2009.10597548.  Google Scholar

[24]

C. Xu and Y. H. Dong, Pricing dynamic fund protections under a stochastic boundary, Journal of Suzhou University of Science and Technology, 2 (2018), 21-25.   Google Scholar

Figure 1.  $ DFP_0 $ versus $ T $
Figure 2.  $ DFP_0 $ versus $ F_0 $
Figure 3.  $ DFP_0 $ versus $ K_0 $
Figure 4.  $ DFP_0 $ versus $ a_{12} $
Figure 5.  $ DFP_0 $ versus $ \lambda_{11} $
Figure 6.  $ DFP_0 $ versus $ \sigma_1 $
Figure 7.  For example, if $ k_{i1} = 1,i = 1,\cdots,m, $ $ k_{i2} = 1,i = 0,1,\cdots,m-1, k_{m2} = 2, $ then we have $ h(\tilde{\alpha}_{ij}-) = -\infty, h(\tilde{\alpha}_{ij}+) = +\infty. $ Therefore, there exists at least one root at each of the $ 2m $ intervals, $ (0,\tilde{\alpha}_{11}),(\tilde{\alpha}_{11},\tilde{\alpha}_{12}),(\tilde{\alpha}_{12},\tilde{\alpha}_{21}),\cdots,(\tilde{\alpha}_{m1},\tilde{\alpha}_{m2}) $ and there exists at least two roots at the interval $ (\tilde{\alpha}_{m2},+\infty). $
[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[8]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[9]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[17]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

2019 Impact Factor: 1.366

Metrics

  • PDF downloads (123)
  • HTML views (572)
  • Cited by (0)

Other articles
by authors

[Back to Top]