
-
Previous Article
Characterizing robust weak sharp solution sets of convex optimization problems with uncertainty
- JIMO Home
- This Issue
-
Next Article
Pricing dynamic fund protection under a Regime-switching Jump-diffusion model with stochastic protection level
Admission control for finite capacity queueing model with general retrial times and state-dependent rates
Indian Institute of Technology Roorkee - 247 667, India |
The finite state dependent queueing model with $ F $-policy is investigated by considering the general retrial attempts. On arrival in the system, if the job finds the server engaged, it is forced to enter into the retrial orbit. After a random period of time, the job from the retrial orbit re-attempts for the service. According to $ F $-policy, as the system attains its full capacity, the arrivals are restricted to join the system until the number of jobs comes down to the prefixed threshold value '$ F $'. The supplementary variable corresponding to the remaining retrial time is used to frame the governing equations which are solved by using Laplace-Stieltjes transform and then applying the recursive method. Special models for machine repair and time-sharing queue are deduced by setting the state dependent rates. Several system indices are obtained explicitly which are further used to facilitate the sensitivity analysis by considering a numerical illustration. A cost function is constructed and minimized for evaluating the optimal threshold parameter and optimal service rate.
References:
[1] |
I. J. B. F. Adan and V. G. Kulkarni,
Single-server queue with Markov-dependent inter-arrival and service times, Queueing Syst., 45 (2003), 113-134.
doi: 10.1023/A:1026093622185. |
[2] |
I. Adiri and B. Avi-Itzhak,
A time-sharing queue, Manage. Sci., 15 (1969), 639-657.
doi: 10.1287/mnsc.15.11.639. |
[3] |
A. Banerjee and U. C. Gupta,
Reducing congestion in bulk-service finite-buffer queueing system using batch-size-dependent service, Perform. Eval., 69 (2012), 53-70.
doi: 10.1016/j.peva.2011.09.002. |
[4] |
M. Boualem, N. Djellab and D. Aïssani,
Stochastic bounds for a single server queue with general retrial times, Bull. Iran. Math. Soc., 40 (2014), 183-198.
|
[5] |
M. Chandrasekaran, M. Muralidhar and U. S. Dixit,
Online optimization of multipass machining based on cloud computing, Int. J. Adv. Manuf. Technol., 65 (2013), 239-250.
|
[6] |
C.-J. Chang, F.-M. Chang and J.-C. Ke,
Economic application in a Bernoulli $F$-policy queueing system with server breakdown, Int. J. Prod. Res., 52 (2014), 743-756.
|
[7] |
C.-J. Chang and J.-C. Ke,
Randomized controlling arrival for a queueing system with subject to server breakdowns, Optimization., 64 (2015), 941-955.
doi: 10.1080/02331934.2013.804076. |
[8] |
J. Chang and J. Wang,
Unreliable M/M/1/1 retrial queues with set-up time, Qual. Technol. Quant. Manag., 3703 (2017), 1-13.
doi: 10.1080/16843703.2017.1320459. |
[9] |
G. Choudhury and J.-C. Ke,
An unreliable retrial queue with delaying repair and general retrial times under Bernoulli vacation schedule, Appl. Math. Comput., 230 (2014), 436-450.
doi: 10.1016/j.amc.2013.12.108. |
[10] |
D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Math. Proc. Cambridge Philos. Soc., 51 (1955), 433.
doi: 10.1017/S0305004100030437. |
[11] |
S. D. Flapper, J.-P. Gayon and L. L. Lim,
On the optimal control of manufacturing and remanufacturing activities with a single shared server, Eur. J. Oper. Res., 234 (2014), 86-98.
doi: 10.1016/j.ejor.2013.10.049. |
[12] |
S. Gao, J. Wang and W. W. Li, An M/G/1 retrial queue with general retrial times, working vacations and vacation interruption, Asia-Pacific J. Oper. Res., 31 (2014), 1440006.
doi: 10.1142/S0217595914400065. |
[13] |
S. M. Gupta,
Interrelationship between controlling arrival and service in queueing systems, Comput. Oper. Res., 22 (1995), 1005-1014.
doi: 10.1016/0305-0548(94)00088-P. |
[14] |
M. Jain,
An $(m, M)$ machine repair problem with spares and state dependent rates: A diffusion process approach, Microelectron. Reliab., 37 (1997), 929-933.
doi: 10.1016/S0026-2714(96)00146-1. |
[15] |
M. Jain and A. Bhagat,
Transient analysis of finite F-policy retrial queues with delayed repair and threshold recovery, Natl. Acad. Sci. Lett., 38 (2015), 257-261.
doi: 10.1007/s40009-014-0337-1. |
[16] |
M. Jain and S. S. Sanga, Performance modeling and ANFIS computing for finite buffer retrial queue under F-policy, in Proceedings of Sixth International Conference on Soft Computing for Problem Solving, Patiala, India, 2017,248–258.
doi: 10.1007/978-981-10-3325-4_25. |
[17] |
M. Jain and S. S. Sanga,
Control F-policy for fault tolerance machining system with general retrial attempts, Natl. Acad. Sci. Lett., 40 (2017), 359-364.
doi: 10.1007/s40009-017-0573-2. |
[18] |
M. Jain and S. S. Sanga, $F$-policy for M/M/1/K retrial queueing model with state-dependent rates, in Performance Prediction and Analytics of Fuzzy, Reliability and Queuing Models (eds. K. Deep, M. Jain and S. Salhi), Springer, Singapore, 2019,127–138.
doi: 10.1007/978-981-13-0857-4_9. |
[19] |
M. Jain, S. S. Sanga and R. K. Meena, Control F-policy for Markovian retrial queue with server breakdowns, in 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), New Delhi, India, 2016, 1–5.
doi: 10.1109/ICPEICES.2016.7853083. |
[20] |
M. Jain, G. C. Sharma and V. Rani,
M/M/R+r machining system with reneging, spares and interdependent controlled rates, Int. J. Math. Oper. Res., 6 (2014), 655-679.
doi: 10.1504/IJMOR.2014.065422. |
[21] |
M. Jain, G. C. Sharma and R. Sharma,
Optimal control of (N, F) policy for unreliable server queue with multi-optional phase repair and start-up, Int. J. Math. Oper. Res., 4 (2012), 152-174.
doi: 10.1504/IJMOR.2012.046375. |
[22] |
M. Jain, G. C. Sharma and C. Shekhar,
Processor-shared service systems with queue-dependent processors, Comput. Oper. Res., 32 (2005), 629-645.
doi: 10.1016/j.cor.2003.08.009. |
[23] |
M. Jain, C. Shekhar and S. Shukla,
Queueing analysis of machine repair problem with controlled rates and working vacation under F-Policy, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 86 (2016), 21-31.
doi: 10.1007/s40010-015-0233-1. |
[24] |
J. C. Ke, C. H. Wu and Z. G. Zhang,
Recent developments in vacation queueing models: A short survey, Int. J. Oper. Res., 7 (2010), 3-8.
|
[25] |
J. Kim and B. Kim,
The processor-sharing queue with bulk arrivals and phase-type services, Perform. Eval., 64 (2007), 277-297.
doi: 10.1016/j.peva.2006.05.006. |
[26] |
E. R. Kumara and S. Dharsana, Analysis of M/M/1 queueing system with state dependent arrival and detainment of retracted customers, Malaya J. Mat., (2015), 89–98. |
[27] |
C. Lee,
On moment stability properties for a class of state-dependent stochastic networks, J. Korean Stat. Soc., 40 (2011), 325-336.
doi: 10.1016/j.jkss.2010.12.003. |
[28] |
C.-D. Liou,
Optimization analysis of the machine repair problem with multiple vacations and working breakdowns, J. Ind. Manag. Optim., 11 (2014), 83-104.
doi: 10.3934/jimo.2015.11.83. |
[29] |
W. A. Massey,
The analysis of queues with time-varying rates for telecommunication models, Telecommun. Syst., 21 (2002), 173-204.
|
[30] |
P. Moreno,
An M/G/1 retrial queue with recurrent customers and general retrial times, Appl. Math. Comput., 159 (2004), 651-666.
doi: 10.1016/j.amc.2003.09.019. |
[31] |
P. R. Parthasarathy and R. Sudhesh,
Time-dependent analysis of a single-server retrial queue with state-dependent rates, Oper. Res. Lett., 35 (2007), 601-611.
doi: 10.1016/j.orl.2006.12.005. |
[32] |
T. Phung-Duc and K. Kawanishi,
Multiserver retrial queue with setup time and its application to data centers, J. Ind. Manag. Optim., 15 (2019), 15-35.
|
[33] |
J. Rodrigues, S. M. Prado, N. Balakrishnan and F. Louzada,
Flexible M/G/1 queueing system with state dependent service rate, Oper. Res. Lett., 44 (2016), 383-389.
doi: 10.1016/j.orl.2016.03.011. |
[34] |
K. H. Wang,
Cost analysis of the M/M/R machine-repair problem with mixed standby spares, Microelectron. Reliab., 33 (1993), 1293-1301.
doi: 10.1016/0026-2714(93)90131-H. |
[35] |
K. H. Wang, C. C. Kuo and W. L. Pearn,
Optimal control of an M/G/1/K queueing system with combined F policy and startup time, J. Optim. Theory Appl., 135 (2007), 285-299.
doi: 10.1007/s10957-007-9253-6. |
[36] |
K.-H. Wang, C.-C. Kuo and W. L. Pearn,
A recursive method for the $F$-policy G/M/1/K queueing system with an exponential startup time, Appl. Math. Model., 32 (2008), 958-970.
doi: 10.1016/j.apm.2007.02.023. |
[37] |
K.-H. Wang and B. D. Sivazlian,
Cost analysis of the M/M/R machine repair problem with spares operating under variable service rates, Microelectron. Reliab., 32 (1992), 1171-1183.
doi: 10.1016/0026-2714(92)90035-J. |
[38] |
D.-Y. Yang, F.-M. Chang and J.-C. Ke,
On an unreliable retrial queue with general repeated attempts and J optional vacations, Appl. Math. Model., 40 (2016), 3275-3288.
doi: 10.1016/j.apm.2015.10.023. |
[39] |
D.-Y. Yang and P.-K. Chang,
A parametric programming solution to the F-policy queue with fuzzy parameters, Int. J. Syst. Sci., 46 (2015), 590-598.
doi: 10.1080/00207721.2013.792975. |
[40] |
D.-Y. Yang and Y.-D. Chang,
Sensitivity analysis of the machine repair problem with general repeated attempts, Int. J. Comput. Math., 95 (2018), 1761-1774.
doi: 10.1080/00207160.2017.1336230. |
[41] |
C. Yeh, Y.-T. Lee, C.-J. Chang and F.-M. Chang,
Analysis of a two-phase queue system with <p, F>- policy, Qual. Technol. Quant. Manag., 14 (2017), 178-194.
|
show all references
References:
[1] |
I. J. B. F. Adan and V. G. Kulkarni,
Single-server queue with Markov-dependent inter-arrival and service times, Queueing Syst., 45 (2003), 113-134.
doi: 10.1023/A:1026093622185. |
[2] |
I. Adiri and B. Avi-Itzhak,
A time-sharing queue, Manage. Sci., 15 (1969), 639-657.
doi: 10.1287/mnsc.15.11.639. |
[3] |
A. Banerjee and U. C. Gupta,
Reducing congestion in bulk-service finite-buffer queueing system using batch-size-dependent service, Perform. Eval., 69 (2012), 53-70.
doi: 10.1016/j.peva.2011.09.002. |
[4] |
M. Boualem, N. Djellab and D. Aïssani,
Stochastic bounds for a single server queue with general retrial times, Bull. Iran. Math. Soc., 40 (2014), 183-198.
|
[5] |
M. Chandrasekaran, M. Muralidhar and U. S. Dixit,
Online optimization of multipass machining based on cloud computing, Int. J. Adv. Manuf. Technol., 65 (2013), 239-250.
|
[6] |
C.-J. Chang, F.-M. Chang and J.-C. Ke,
Economic application in a Bernoulli $F$-policy queueing system with server breakdown, Int. J. Prod. Res., 52 (2014), 743-756.
|
[7] |
C.-J. Chang and J.-C. Ke,
Randomized controlling arrival for a queueing system with subject to server breakdowns, Optimization., 64 (2015), 941-955.
doi: 10.1080/02331934.2013.804076. |
[8] |
J. Chang and J. Wang,
Unreliable M/M/1/1 retrial queues with set-up time, Qual. Technol. Quant. Manag., 3703 (2017), 1-13.
doi: 10.1080/16843703.2017.1320459. |
[9] |
G. Choudhury and J.-C. Ke,
An unreliable retrial queue with delaying repair and general retrial times under Bernoulli vacation schedule, Appl. Math. Comput., 230 (2014), 436-450.
doi: 10.1016/j.amc.2013.12.108. |
[10] |
D. R. Cox, The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables, Math. Proc. Cambridge Philos. Soc., 51 (1955), 433.
doi: 10.1017/S0305004100030437. |
[11] |
S. D. Flapper, J.-P. Gayon and L. L. Lim,
On the optimal control of manufacturing and remanufacturing activities with a single shared server, Eur. J. Oper. Res., 234 (2014), 86-98.
doi: 10.1016/j.ejor.2013.10.049. |
[12] |
S. Gao, J. Wang and W. W. Li, An M/G/1 retrial queue with general retrial times, working vacations and vacation interruption, Asia-Pacific J. Oper. Res., 31 (2014), 1440006.
doi: 10.1142/S0217595914400065. |
[13] |
S. M. Gupta,
Interrelationship between controlling arrival and service in queueing systems, Comput. Oper. Res., 22 (1995), 1005-1014.
doi: 10.1016/0305-0548(94)00088-P. |
[14] |
M. Jain,
An $(m, M)$ machine repair problem with spares and state dependent rates: A diffusion process approach, Microelectron. Reliab., 37 (1997), 929-933.
doi: 10.1016/S0026-2714(96)00146-1. |
[15] |
M. Jain and A. Bhagat,
Transient analysis of finite F-policy retrial queues with delayed repair and threshold recovery, Natl. Acad. Sci. Lett., 38 (2015), 257-261.
doi: 10.1007/s40009-014-0337-1. |
[16] |
M. Jain and S. S. Sanga, Performance modeling and ANFIS computing for finite buffer retrial queue under F-policy, in Proceedings of Sixth International Conference on Soft Computing for Problem Solving, Patiala, India, 2017,248–258.
doi: 10.1007/978-981-10-3325-4_25. |
[17] |
M. Jain and S. S. Sanga,
Control F-policy for fault tolerance machining system with general retrial attempts, Natl. Acad. Sci. Lett., 40 (2017), 359-364.
doi: 10.1007/s40009-017-0573-2. |
[18] |
M. Jain and S. S. Sanga, $F$-policy for M/M/1/K retrial queueing model with state-dependent rates, in Performance Prediction and Analytics of Fuzzy, Reliability and Queuing Models (eds. K. Deep, M. Jain and S. Salhi), Springer, Singapore, 2019,127–138.
doi: 10.1007/978-981-13-0857-4_9. |
[19] |
M. Jain, S. S. Sanga and R. K. Meena, Control F-policy for Markovian retrial queue with server breakdowns, in 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), New Delhi, India, 2016, 1–5.
doi: 10.1109/ICPEICES.2016.7853083. |
[20] |
M. Jain, G. C. Sharma and V. Rani,
M/M/R+r machining system with reneging, spares and interdependent controlled rates, Int. J. Math. Oper. Res., 6 (2014), 655-679.
doi: 10.1504/IJMOR.2014.065422. |
[21] |
M. Jain, G. C. Sharma and R. Sharma,
Optimal control of (N, F) policy for unreliable server queue with multi-optional phase repair and start-up, Int. J. Math. Oper. Res., 4 (2012), 152-174.
doi: 10.1504/IJMOR.2012.046375. |
[22] |
M. Jain, G. C. Sharma and C. Shekhar,
Processor-shared service systems with queue-dependent processors, Comput. Oper. Res., 32 (2005), 629-645.
doi: 10.1016/j.cor.2003.08.009. |
[23] |
M. Jain, C. Shekhar and S. Shukla,
Queueing analysis of machine repair problem with controlled rates and working vacation under F-Policy, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci., 86 (2016), 21-31.
doi: 10.1007/s40010-015-0233-1. |
[24] |
J. C. Ke, C. H. Wu and Z. G. Zhang,
Recent developments in vacation queueing models: A short survey, Int. J. Oper. Res., 7 (2010), 3-8.
|
[25] |
J. Kim and B. Kim,
The processor-sharing queue with bulk arrivals and phase-type services, Perform. Eval., 64 (2007), 277-297.
doi: 10.1016/j.peva.2006.05.006. |
[26] |
E. R. Kumara and S. Dharsana, Analysis of M/M/1 queueing system with state dependent arrival and detainment of retracted customers, Malaya J. Mat., (2015), 89–98. |
[27] |
C. Lee,
On moment stability properties for a class of state-dependent stochastic networks, J. Korean Stat. Soc., 40 (2011), 325-336.
doi: 10.1016/j.jkss.2010.12.003. |
[28] |
C.-D. Liou,
Optimization analysis of the machine repair problem with multiple vacations and working breakdowns, J. Ind. Manag. Optim., 11 (2014), 83-104.
doi: 10.3934/jimo.2015.11.83. |
[29] |
W. A. Massey,
The analysis of queues with time-varying rates for telecommunication models, Telecommun. Syst., 21 (2002), 173-204.
|
[30] |
P. Moreno,
An M/G/1 retrial queue with recurrent customers and general retrial times, Appl. Math. Comput., 159 (2004), 651-666.
doi: 10.1016/j.amc.2003.09.019. |
[31] |
P. R. Parthasarathy and R. Sudhesh,
Time-dependent analysis of a single-server retrial queue with state-dependent rates, Oper. Res. Lett., 35 (2007), 601-611.
doi: 10.1016/j.orl.2006.12.005. |
[32] |
T. Phung-Duc and K. Kawanishi,
Multiserver retrial queue with setup time and its application to data centers, J. Ind. Manag. Optim., 15 (2019), 15-35.
|
[33] |
J. Rodrigues, S. M. Prado, N. Balakrishnan and F. Louzada,
Flexible M/G/1 queueing system with state dependent service rate, Oper. Res. Lett., 44 (2016), 383-389.
doi: 10.1016/j.orl.2016.03.011. |
[34] |
K. H. Wang,
Cost analysis of the M/M/R machine-repair problem with mixed standby spares, Microelectron. Reliab., 33 (1993), 1293-1301.
doi: 10.1016/0026-2714(93)90131-H. |
[35] |
K. H. Wang, C. C. Kuo and W. L. Pearn,
Optimal control of an M/G/1/K queueing system with combined F policy and startup time, J. Optim. Theory Appl., 135 (2007), 285-299.
doi: 10.1007/s10957-007-9253-6. |
[36] |
K.-H. Wang, C.-C. Kuo and W. L. Pearn,
A recursive method for the $F$-policy G/M/1/K queueing system with an exponential startup time, Appl. Math. Model., 32 (2008), 958-970.
doi: 10.1016/j.apm.2007.02.023. |
[37] |
K.-H. Wang and B. D. Sivazlian,
Cost analysis of the M/M/R machine repair problem with spares operating under variable service rates, Microelectron. Reliab., 32 (1992), 1171-1183.
doi: 10.1016/0026-2714(92)90035-J. |
[38] |
D.-Y. Yang, F.-M. Chang and J.-C. Ke,
On an unreliable retrial queue with general repeated attempts and J optional vacations, Appl. Math. Model., 40 (2016), 3275-3288.
doi: 10.1016/j.apm.2015.10.023. |
[39] |
D.-Y. Yang and P.-K. Chang,
A parametric programming solution to the F-policy queue with fuzzy parameters, Int. J. Syst. Sci., 46 (2015), 590-598.
doi: 10.1080/00207721.2013.792975. |
[40] |
D.-Y. Yang and Y.-D. Chang,
Sensitivity analysis of the machine repair problem with general repeated attempts, Int. J. Comput. Math., 95 (2018), 1761-1774.
doi: 10.1080/00207160.2017.1336230. |
[41] |
C. Yeh, Y.-T. Lee, C.-J. Chang and F.-M. Chang,
Analysis of a two-phase queue system with <p, F>- policy, Qual. Technol. Quant. Manag., 14 (2017), 178-194.
|









E[Nq] | PI | PSB | TC | |||||||||
μ | Exp | Е3 | D | Exp | Е3 | D | Exp | Е3 | D | Exp | Е3 | D |
1 | 3.164 | 3.110 | 3.060 | 0.303 | 0.335 | 0.354 | 0.697 | 0.665 | 0.646 | 532.25 | 543.43 | 547.66 |
2 | 2.043 | 2.013 | 1.964 | 0.492 | 0.543 | 0.569 | 0.508 | 0.457 | 0.431 | 473.61 | 506.62 | 518.70 |
3 | 1.482 | 1.477 | 1.436 | 0.580 | 0.643 | 0.G72 | 0.420 | 0.357 | 0.328 | 431.77 | 485.08 | 505.76 |
4 | 1.155 | 1.166 | 1.135 | 0.633 | 0.699 | 0.730 | 0.367 | 0.301 | 0.270 | 403.18 | 469.82 | 499.15 |
5 | 0.940 | 0.963 | 0.941 | 0.671 | 0.735 | 0.768 | 0.329 | 0.265 | 0.232 | 385.15 | 459.00 | 496.05 |
E[Nq] | PI | PSB | TC | |||||||||
μ | Exp | Е3 | D | Exp | Е3 | D | Exp | Е3 | D | Exp | Е3 | D |
1 | 3.164 | 3.110 | 3.060 | 0.303 | 0.335 | 0.354 | 0.697 | 0.665 | 0.646 | 532.25 | 543.43 | 547.66 |
2 | 2.043 | 2.013 | 1.964 | 0.492 | 0.543 | 0.569 | 0.508 | 0.457 | 0.431 | 473.61 | 506.62 | 518.70 |
3 | 1.482 | 1.477 | 1.436 | 0.580 | 0.643 | 0.G72 | 0.420 | 0.357 | 0.328 | 431.77 | 485.08 | 505.76 |
4 | 1.155 | 1.166 | 1.135 | 0.633 | 0.699 | 0.730 | 0.367 | 0.301 | 0.270 | 403.18 | 469.82 | 499.15 |
5 | 0.940 | 0.963 | 0.941 | 0.671 | 0.735 | 0.768 | 0.329 | 0.265 | 0.232 | 385.15 | 459.00 | 496.05 |
λ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
1 | 1.132 | 1.060 | 0.998 | 0.704 | 0.771 | 0.793 | 0.296 | 0.229 | 0.207 | 562.12 | 599.89 | 618.34 |
2 | 1.742 | 1.604 | 1.542 | 0.644 | 0.687 | 0.702 | 0.356 | 0.313 | 0.298 | 677.66 | 662.77 | 667.59 |
3 | 2.161 | 2.026 | 1.985 | 0.582 | 0.617 | 0.626 | 0.418 | 0.383 | 0.374 | 711.49 | 688.00 | 689.76 |
4 | 2.494 | 2.372 | 2.347 | 0.530 | 0.559 | 0.564 | 0.470 | 0.441 | 0.436 | 729.36 | 704.04 | 704.74 |
5 | 2.767 | 2.661 | 2.645 | 0.486 | 0.510 | 0.514 | 0.514 | 0.490 | 0.486 | 741.01 | 715.85 | 716.15 |
λ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
1 | 1.132 | 1.060 | 0.998 | 0.704 | 0.771 | 0.793 | 0.296 | 0.229 | 0.207 | 562.12 | 599.89 | 618.34 |
2 | 1.742 | 1.604 | 1.542 | 0.644 | 0.687 | 0.702 | 0.356 | 0.313 | 0.298 | 677.66 | 662.77 | 667.59 |
3 | 2.161 | 2.026 | 1.985 | 0.582 | 0.617 | 0.626 | 0.418 | 0.383 | 0.374 | 711.49 | 688.00 | 689.76 |
4 | 2.494 | 2.372 | 2.347 | 0.530 | 0.559 | 0.564 | 0.470 | 0.441 | 0.436 | 729.36 | 704.04 | 704.74 |
5 | 2.767 | 2.661 | 2.645 | 0.486 | 0.510 | 0.514 | 0.514 | 0.490 | 0.486 | 741.01 | 715.85 | 716.15 |
γ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
0.5 | 0.581 | 0.633 | 0.628 | 0.745 | 0.799 | 0.830 | 0.255 | 0.201 | 0.170 | 384.56 | 448.74 | 500.10 |
0.6 | 0.562 | 0.627 | 0.637 | 0.733 | 0.784 | 0.817 | 0.267 | 0.216 | 0.183 | 365.13 | 423.37 | 477.68 |
0.7 | 0.544 | 0.617 | 0.643 | 0.723 | 0.771 | 0.805 | 0.277 | 0.229 | 0.195 | 348.73 | 403.30 | 459.70 |
0.8 | 0.527 | 0.606 | 0.645 | 0.714 | 0.760 | 0.795 | 0.286 | 0.240 | 0.205 | 334.57 | 386.37 | 444.12 |
0.9 | 0.510 | 0.593 | 0.644 | 0.706 | 0.750 | 0.784 | 0.294 | 0.250 | 0.216 | 322.17 | 371.45 | 429.80 |
γ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
0.5 | 0.581 | 0.633 | 0.628 | 0.745 | 0.799 | 0.830 | 0.255 | 0.201 | 0.170 | 384.56 | 448.74 | 500.10 |
0.6 | 0.562 | 0.627 | 0.637 | 0.733 | 0.784 | 0.817 | 0.267 | 0.216 | 0.183 | 365.13 | 423.37 | 477.68 |
0.7 | 0.544 | 0.617 | 0.643 | 0.723 | 0.771 | 0.805 | 0.277 | 0.229 | 0.195 | 348.73 | 403.30 | 459.70 |
0.8 | 0.527 | 0.606 | 0.645 | 0.714 | 0.760 | 0.795 | 0.286 | 0.240 | 0.205 | 334.57 | 386.37 | 444.12 |
0.9 | 0.510 | 0.593 | 0.644 | 0.706 | 0.750 | 0.784 | 0.294 | 0.250 | 0.216 | 322.17 | 371.45 | 429.80 |
Cost Set | |||||
Ⅰ | 30 | 30 | 50 | 70 | 40 |
Ⅱ | 10 | 10 | 120 | 15 | 90 |
Ⅲ | 15 | 5 | 120 | 15 | 90 |
Ⅳ | 20 | 20 | 100 | 15 | 90 |
Cost Set | |||||
Ⅰ | 30 | 30 | 50 | 70 | 40 |
Ⅱ | 10 | 10 | 120 | 15 | 90 |
Ⅲ | 15 | 5 | 120 | 15 | 90 |
Ⅳ | 20 | 20 | 100 | 15 | 90 |
γ | |||
Exp | E3 | D | |
0.3 | (12,852.01) | (14,898.49) | (15,937.18) |
0.5 | (10,821.20) | (12,848.52) | (13,874.16) |
0.7 | (8,806.92) | (10,821.04) | (11,836.66) |
γ | |||
Exp | E3 | D | |
0.3 | (12,852.01) | (14,898.49) | (15,937.18) |
0.5 | (10,821.20) | (12,848.52) | (13,874.16) |
0.7 | (8,806.92) | (10,821.04) | (11,836.66) |
Iterations | F* | μ | TC(F*, μ) | Max. tolerance |
0 | 10 | 1 | 853.525 | 9.87E+01 |
1 | 10 | 2 | 842.70 | 5.69E+01 |
2 | 10 | 1.6344 | 823.783 | 3.5E+01 |
3 | 10 | 1.0491 | 821.311 | 8.28 |
4 | 10 | 1.5255 | 821.207 | 2.27 |
5 | 10 | 1.4917 | 821.199 | 6.35E-02 |
6 | 10 | 1.4990 | 821.199 | 4Л2Е-04 |
7 | 10 | 1.4988 | 821.199 | 1.02E-05 |
Iterations | F* | μ | TC(F*, μ) | Max. tolerance |
0 | 10 | 1 | 853.525 | 9.87E+01 |
1 | 10 | 2 | 842.70 | 5.69E+01 |
2 | 10 | 1.6344 | 823.783 | 3.5E+01 |
3 | 10 | 1.0491 | 821.311 | 8.28 |
4 | 10 | 1.5255 | 821.207 | 2.27 |
5 | 10 | 1.4917 | 821.199 | 6.35E-02 |
6 | 10 | 1.4990 | 821.199 | 4Л2Е-04 |
7 | 10 | 1.4988 | 821.199 | 1.02E-05 |
γ | |||
Exp | E3 | D | |
0.3 | (12, 1.601,851.05) | (14, 1.668,897.73) | (15, 1.323,936.78) |
0.5 | (10, 1.499,821.20) | (12, 1.579,847.89) | (13, 1.691,872.05) |
0.7 | (8, 1.489,806.90) | (10, 1.543,820.77) | (11, 1.627,834.89) |
γ | |||
Exp | E3 | D | |
0.3 | (12, 1.601,851.05) | (14, 1.668,897.73) | (15, 1.323,936.78) |
0.5 | (10, 1.499,821.20) | (12, 1.579,847.89) | (13, 1.691,872.05) |
0.7 | (8, 1.489,806.90) | (10, 1.543,820.77) | (11, 1.627,834.89) |
μ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
6 | 0.876 | 0.995 | 1.041 | 0.552 | 0.557 | 0.564 | 0.448 | 0.443 | 0.436 | 274.65 | 307.11 | 323.69 |
8 | 0.476 | 0.570 | 0.623 | 0.654 | 0.656 | 0.659 | 0.346 | 0.344 | 0.341 | 241.50 | 270.93 | 290.14 |
10 | 0.286 | 0.352 | 0.399 | 0.721 | 0.722 | 0.723 | 0.279 | 0.278 | 0.277 | 237.26 | 261.73 | 280.32 |
12 | 0.187 | 0.235 | 0.272 | 0.767 | 0.767 | 0.768 | 0.233 | 0.233 | 0.232 | 247.50 | 267.75 | 284.72 |
14 | 0.131 | 0.166 | 0.196 | 0.800 | 0.800 | 0.801 | 0.200 | 0.200 | 0.199 | 265.16 | 282.20 | 297.46 |
μ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
6 | 0.876 | 0.995 | 1.041 | 0.552 | 0.557 | 0.564 | 0.448 | 0.443 | 0.436 | 274.65 | 307.11 | 323.69 |
8 | 0.476 | 0.570 | 0.623 | 0.654 | 0.656 | 0.659 | 0.346 | 0.344 | 0.341 | 241.50 | 270.93 | 290.14 |
10 | 0.286 | 0.352 | 0.399 | 0.721 | 0.722 | 0.723 | 0.279 | 0.278 | 0.277 | 237.26 | 261.73 | 280.32 |
12 | 0.187 | 0.235 | 0.272 | 0.767 | 0.767 | 0.768 | 0.233 | 0.233 | 0.232 | 247.50 | 267.75 | 284.72 |
14 | 0.131 | 0.166 | 0.196 | 0.800 | 0.800 | 0.801 | 0.200 | 0.200 | 0.199 | 265.16 | 282.20 | 297.46 |
λ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
2 | 0.107 | 0.124 | 0.138 | 0.800 | 0.800 | 0.800 | 0.200 | 0.200 | 0.200 | 193.36 | 201.93 | 208.81 |
4 | 0.783 | 0.948 | 1.014 | 0.613 | 0.619 | 0.628 | 0.387 | 0.381 | 0.372 | 341.33 | 391.91 | 418.07 |
6 | 1.726 | 1.843 | 1.829 | 0.493 | 0.516 | 0.535 | 0.507 | 0.484 | 0.465 | 504.56 | 547.33 | 559.06 |
8 | 2.340 | 2.357 | 2.303 | 0.426 | 0.456 | 0.478 | 0.574 | 0.544 | 0.522 | 589.23 | 614.24 | 619.62 |
10 | 2.737 | 2.699 | 2.632 | 0.380 | 0.412 | 0.434 | 0.620 | 0.588 | 0.566 | 634.09 | 649.61 | 652.77 |
λ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
2 | 0.107 | 0.124 | 0.138 | 0.800 | 0.800 | 0.800 | 0.200 | 0.200 | 0.200 | 193.36 | 201.93 | 208.81 |
4 | 0.783 | 0.948 | 1.014 | 0.613 | 0.619 | 0.628 | 0.387 | 0.381 | 0.372 | 341.33 | 391.91 | 418.07 |
6 | 1.726 | 1.843 | 1.829 | 0.493 | 0.516 | 0.535 | 0.507 | 0.484 | 0.465 | 504.56 | 547.33 | 559.06 |
8 | 2.340 | 2.357 | 2.303 | 0.426 | 0.456 | 0.478 | 0.574 | 0.544 | 0.522 | 589.23 | 614.24 | 619.62 |
10 | 2.737 | 2.699 | 2.632 | 0.380 | 0.412 | 0.434 | 0.620 | 0.588 | 0.566 | 634.09 | 649.61 | 652.77 |
γ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
1 | 0.286 | 0.352 | 0.399 | 0.721 | 0.722 | 0.723 | 0.279 | 0.278 | 0.277 | 237.26 | 261.73 | 280.32 |
1.5 | 0.225 | 0.256 | 0.276 | 0.719 | 0.721 | 0.722 | 0.281 | 0.279 | 0.278 | 214.93 | 226.13 | 234.03 |
2 | 0.195 | 0.212 | 0.223 | 0.718 | 0.720 | 0.721 | 0.282 | 0.280 | 0.279 | 204.02 | 210.31 | 214.43 |
2.5 | 0.177 | 0.188 | 0.194 | 0.717 | 0.719 | 0.720 | 0.283 | 0.281 | 0.280 | 197.58 | 201.59 | 204.06 |
3 | 0.165 | 0.173 | 0.177 | 0.716 | 0.718 | 0.719 | 0.284 | 0.282 | 0.281 | 193.35 | 196.12 | 197.75 |
γ | E[Nq] | PI | PSB | TC | ||||||||
Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | Exp | E3 | D | |
1 | 0.286 | 0.352 | 0.399 | 0.721 | 0.722 | 0.723 | 0.279 | 0.278 | 0.277 | 237.26 | 261.73 | 280.32 |
1.5 | 0.225 | 0.256 | 0.276 | 0.719 | 0.721 | 0.722 | 0.281 | 0.279 | 0.278 | 214.93 | 226.13 | 234.03 |
2 | 0.195 | 0.212 | 0.223 | 0.718 | 0.720 | 0.721 | 0.282 | 0.280 | 0.279 | 204.02 | 210.31 | 214.43 |
2.5 | 0.177 | 0.188 | 0.194 | 0.717 | 0.719 | 0.720 | 0.283 | 0.281 | 0.280 | 197.58 | 201.59 | 204.06 |
3 | 0.165 | 0.173 | 0.177 | 0.716 | 0.718 | 0.719 | 0.284 | 0.282 | 0.281 | 193.35 | 196.12 | 197.75 |
Cost Set | |||||
Ⅰ | 30 | 40 | 120 | 60 | 90 |
Ⅱ | 10 | 10 | 120 | 15 | 90 |
Ⅲ | 15 | 5 | 120 | 15 | 90 |
Ⅳ | 10 | 10 | 100 | 15 | 110 |
Cost Set | |||||
Ⅰ | 30 | 40 | 120 | 60 | 90 |
Ⅱ | 10 | 10 | 120 | 15 | 90 |
Ⅲ | 15 | 5 | 120 | 15 | 90 |
Ⅳ | 10 | 10 | 100 | 15 | 110 |
γ | |||
Exp | E3 | D | |
1 | (2,822.28) | (1,858.94) | (1,872.35) |
3 | (5,665.29) | (5,678.51) | (5,687.12) |
5 | (6,627.96) | (6,632.94) | (6,635.92) |
γ | |||
Exp | E3 | D | |
1 | (2,822.28) | (1,858.94) | (1,872.35) |
3 | (5,665.29) | (5,678.51) | (5,687.12) |
5 | (6,627.96) | (6,632.94) | (6,635.92) |
Iterations | F* | μ | TC(F*, μ) | Max. tolerance |
0 | 5 | 8 | 665.286 | 1.58E+01 |
1 | 5 | 7 | 660.172 | 7.35 |
2 | 5 | 7.3170 | 669.221 | 1.16 |
3 | 5 | 7.2739 | 659.194 | 6.86E-02 |
4 | 5 | 7.2712 | 659.194 | 7.04E-04 |
5 | 5 | 7.2712 | 659.194 | 0 |
Iterations | F* | μ | TC(F*, μ) | Max. tolerance |
0 | 5 | 8 | 665.286 | 1.58E+01 |
1 | 5 | 7 | 660.172 | 7.35 |
2 | 5 | 7.3170 | 669.221 | 1.16 |
3 | 5 | 7.2739 | 659.194 | 6.86E-02 |
4 | 5 | 7.2712 | 659.194 | 7.04E-04 |
5 | 5 | 7.2712 | 659.194 | 0 |
γ | |||
Exp | E3 | D | |
1 | (2, 6.169,803.45) | (1, 5.854,809.85) | (1, 6.092,820.80) |
3 | (5, 7.271,659.19) | (5, 7.341,673.70) | (5, 7.378,682.92) |
5 | (6, 7.012,615.23) | (6, 7.048,621.22) | (6, 7.068,624.76) |
γ | |||
Exp | E3 | D | |
1 | (2, 6.169,803.45) | (1, 5.854,809.85) | (1, 6.092,820.80) |
3 | (5, 7.271,659.19) | (5, 7.341,673.70) | (5, 7.378,682.92) |
5 | (6, 7.012,615.23) | (6, 7.048,621.22) | (6, 7.068,624.76) |
[1] |
Arnaud Devos, Joris Walraevens, Tuan Phung-Duc, Herwig Bruneel. Analysis of the queue lengths in a priority retrial queue with constant retrial policy. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2813-2842. doi: 10.3934/jimo.2019082 |
[2] |
Yi Peng, Jinbiao Wu. Analysis of a batch arrival retrial queue with impatient customers subject to the server disasters. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2243-2264. doi: 10.3934/jimo.2020067 |
[3] |
Pikkala Vijaya Laxmi, Obsie Mussa Yesuf. Analysis of a finite buffer general input queue with Markovian service process and accessible and non-accessible batch service. Journal of Industrial and Management Optimization, 2010, 6 (4) : 929-944. doi: 10.3934/jimo.2010.6.929 |
[4] |
Gábor Horváth, Zsolt Saffer, Miklós Telek. Queue length analysis of a Markov-modulated vacation queue with dependent arrival and service processes and exhaustive service policy. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1365-1381. doi: 10.3934/jimo.2016077 |
[5] |
Rakesh Nandi, Sujit Kumar Samanta, Chesoong Kim. Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3603-3631. doi: 10.3934/jimo.2020135 |
[6] |
Jinting Wang, Linfei Zhao, Feng Zhang. Analysis of the finite source retrial queues with server breakdowns and repairs. Journal of Industrial and Management Optimization, 2011, 7 (3) : 655-676. doi: 10.3934/jimo.2011.7.655 |
[7] |
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. An integrated inventory model with variable holding cost under two levels of trade-credit policy. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 169-191. doi: 10.3934/naco.2018010 |
[8] |
Bart Feyaerts, Stijn De Vuyst, Herwig Bruneel, Sabine Wittevrongel. The impact of the $NT$-policy on the behaviour of a discrete-time queue with general service times. Journal of Industrial and Management Optimization, 2014, 10 (1) : 131-149. doi: 10.3934/jimo.2014.10.131 |
[9] |
Feng Zhang, Jinting Wang, Bin Liu. On the optimal and equilibrium retrial rates in an unreliable retrial queue with vacations. Journal of Industrial and Management Optimization, 2012, 8 (4) : 861-875. doi: 10.3934/jimo.2012.8.861 |
[10] |
Pikkala Vijaya Laxmi, Seleshi Demie. Performance analysis of renewal input $(a,c,b)$ policy queue with multiple working vacations and change over times. Journal of Industrial and Management Optimization, 2014, 10 (3) : 839-857. doi: 10.3934/jimo.2014.10.839 |
[11] |
Qilin Wang, S. J. Li. Higher-order sensitivity analysis in nonconvex vector optimization. Journal of Industrial and Management Optimization, 2010, 6 (2) : 381-392. doi: 10.3934/jimo.2010.6.381 |
[12] |
Alireza Ghaffari Hadigheh, Tamás Terlaky. Generalized support set invariancy sensitivity analysis in linear optimization. Journal of Industrial and Management Optimization, 2006, 2 (1) : 1-18. doi: 10.3934/jimo.2006.2.1 |
[13] |
Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in set-valued optimization under strictly minimal efficiency. Evolution Equations and Control Theory, 2017, 6 (3) : 427-436. doi: 10.3934/eect.2017022 |
[14] |
Behrouz Kheirfam, Kamal mirnia. Comments on ''Generalized support set invariancy sensitivity analysis in linear optimization''. Journal of Industrial and Management Optimization, 2008, 4 (3) : 611-616. doi: 10.3934/jimo.2008.4.611 |
[15] |
Xue Qiao, Zheng Wang, Haoxun Chen. Joint optimal pricing and inventory management policy and its sensitivity analysis for perishable products: Lost sale case. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021079 |
[16] |
Wenjuan Zhao, Shunfu Jin, Wuyi Yue. A stochastic model and social optimization of a blockchain system based on a general limited batch service queue. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1845-1861. doi: 10.3934/jimo.2020049 |
[17] |
A. Azhagappan, T. Deepa. Transient analysis of N-policy queue with system disaster repair preventive maintenance re-service balking closedown and setup times. Journal of Industrial and Management Optimization, 2020, 16 (6) : 2843-2856. doi: 10.3934/jimo.2019083 |
[18] |
Raina Raj, Vidyottama Jain. Optimization of traffic control in $ MMAP\mathit{[2]}/PH\mathit{[2]}/S$ priority queueing model with $ PH $ retrial times and the preemptive repeat policy. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022044 |
[19] |
Shaojun Lan, Yinghui Tang. Performance analysis of a discrete-time $ Geo/G/1$ retrial queue with non-preemptive priority, working vacations and vacation interruption. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1421-1446. doi: 10.3934/jimo.2018102 |
[20] |
Michiel De Muynck, Herwig Bruneel, Sabine Wittevrongel. Analysis of a discrete-time queue with general service demands and phase-type service capacities. Journal of Industrial and Management Optimization, 2017, 13 (4) : 1901-1926. doi: 10.3934/jimo.2017024 |
2020 Impact Factor: 1.801
Tools
Metrics
Other articles
by authors
[Back to Top]