\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Corporate and personal credit scoring via fuzzy non-kernel SVM with fuzzy within-class scatter

  • * Corresponding author

    * Corresponding author 

The first author is supported by NNSFC grant # 71701035 and # 71831003

Abstract Full Text(HTML) Figure(0) / Table(5) Related Papers Cited by
  • Nowadays, the effective credit scoring becomes a very crucial factor for gaining competitive advantages in credit market for both customers and corporations. In this paper, we propose a credit scoring method which combines the non-kernel fuzzy 2-norm quadratic surface SVM model, T-test feature weighting strategy and fuzzy within-class scatter together. It is worth pointing out that this new method not only saves computational time by avoiding choosing a kernel and corresponding parameters in the classical SVM models, but also addresses the "curse of dimensionality" issue and improves the robustness. Besides, we develop an efficient way to calculate the fuzzy membership of each training point by solving a linear programming problem. Finally, we conduct several numerical tests on two benchmark data sets of personal credit and one real-world data set of corporation credit. The numerical results strongly demonstrate that the proposed method outperforms eight state-of-the-art and commonly-used credit scoring methods in terms of accuracy and robustness.

    Mathematics Subject Classification: Primary: 62H30; Secondary: 90C20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Credit Data Sets

    data set # of features Class $ C_1 $ Class $ C_2 $
    name # of points name # of points
    German 20 Creditworthy 700 Non-creditworthy 300
    Australian 14 Non-default 383 Default 307
    Chinese 7 Good credit 58 Bad credit 48
     | Show Table
    DownLoad: CSV

    Table 2.  German Credit Data Test

    model misclassification rate (%) CPU time (s)
    mean std
    LOG_REG 23.04 0.35 0.14
    FFBP_NN 24.30 0.57 3.83
    SVM_GausKer 24.31 0.71 3.30
    W2NSVM_GausKer 23.85 0.56 5.72
    W2NSVM_QuadKer 23.92 0.81 5.36
    FSVMWCS_GausKer 23.42 1.84 6.87
    Clu_SVM 24.49 0.71 0.25
    Dagher's QSVM 24.26 0.62 4.63
    SQSSVM 23.86 0.59 2.82
    FNKSVM-FWS 21.36 0.51 4.23
     | Show Table
    DownLoad: CSV

    Table 3.  Australian Credit Data Test

    model misclassification rate (%) CPU time (s)
    mean std
    LOG_REG 13.56 0.27 0.12
    FFBP_NN 14.42 1.16 2.72
    SVM_GausKer 15.00 1.06 1.30
    W2NSVM_GausKer 14.87 0.53 2.73
    W2NSVM_QuadKer 14.59 0.46 3.01
    FSVMWCS_GausKer 14.63 3.68 3.75
    Clu_SVM 14.34 0.53 0.16
    Dagher's QSVM 26.42 1.23 1.63
    SQSSVM 14.57 0.57 0.80
    FNKSVM-FWS 11.96 0.43 1.56
     | Show Table
    DownLoad: CSV

    Table 4.  Chinese Credit Data Test

    model misclassification rate (%) CPU time (s)
    mean std
    LOG_REG 7.56 0.57 0.235
    FFBP_NN 24.01 2.25 4.412
    SVM_GausKer 13.75 0.90 0.034
    W2NSVM_GausKer 12.13 1.89 0.053
    W2NSVM_QuadKer 12.07 2.01 0.062
    FSVMWCS_GausKer 21.18 2.88 0.063
    Clu_SVM 10.96 0.55 0.048
    Dagher's QSVM 11.24 2.33 0.087
    SQSSVM 10.87 1.96 0.056
    FNKSVM-FWS 8.50 0.51 0.083
     | Show Table
    DownLoad: CSV

    Table 5.  Robustness of Models on Australian Credit Data

    model mean of misclassification rates (%)
    without outliers with outliers
    LOG_REG 13.56 17.87
    FFBP_NN 14.42 15.94
    SVM_GausKer 15.00 15.80
    W2NSVM_GausKer 14.87 15.65
    W2NSVM_QuadKer 14.59 15.36
    FSVMWCS_GausKer 14.63 18.43
    Clu_SVM 14.34 17.84
    Dagher's QSVM 26.42 53.21
    SQSSVM 14.57 15.58
    FNKSVM-FWS 11.96 12.61
     | Show Table
    DownLoad: CSV
  • [1] W. An and M. Liang, Fuzzy support vector machine based on within-class scatter for classification problems with outliers or noises, Neurocomputing, 110 (2013), 101-110.  doi: 10.1016/j.neucom.2012.11.023.
    [2] K. Bache and M. Lichman, Uci machine learning repository, http://archive.ics.uci.edu/ml, 2013.
    [3] Y. BaiX. HanT. Chen and H. Yu, Quadratic kernel-free least squares support vector machine for target diseases classification, Journal of Combinatorial Optimization, 30 (2015), 850-870.  doi: 10.1007/s10878-015-9848-z.
    [4] G. Baudat and F. Anouar, Generalized discriminant analysis using a kernel approach, Neural Computation, 12 (2000), 2385-2404.  doi: 10.1162/089976600300014980.
    [5] S. Boyd and  L. VandenbergheConvex Optimization, Cambridge University Press, New York, 2004.  doi: 10.1017/CBO9780511804441.
    [6] I. Dagher, Quadratic kernel-free non-linear support vector machine, Journal of Global Optimization, 41 (2008), 15-30.  doi: 10.1007/s10898-007-9162-0.
    [7] R. Fisher, The use of multiple measurements in taxonomic problems, Annals of Human Genetics, 7 (1936), 179-188.  doi: 10.1111/j.1469-1809.1936.tb02137.x.
    [8] T. GestelB. Baesens and J. Garcia, A support vector machine approach to credit scoring, Journal of Bank and Finance, 2 (2003), 73-82. 
    [9] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd edition, Morgan Kaufmann, San Francisco, CA, 2006.
    [10] L. Han and H. Zhao, Orthogonal support vector machine for credit scoring, Engineering Applications of Artificial Intelligence, 26 (2013), 848-862.  doi: 10.1016/j.engappai.2012.10.005.
    [11] T. Harris, Credit scoring using the clustered support vector machine, Expert Systems with Applications, 42 (2015), 741-750.  doi: 10.1016/j.eswa.2014.08.029.
    [12] C. HuangM. Chen and C. Wang, Credit scoring with a data mining approach based on support vector machines, Expert Systems with Applications, 33 (2007), 847-856.  doi: 10.1016/j.eswa.2006.07.007.
    [13] X. JiangY. Zhang and J. Lv, Fuzzy svm with a new fuzzy membership function, Neural Computing and Applications, 15 (2006), 268-276.  doi: 10.1007/s00521-006-0028-z.
    [14] C. Lin and S. Wang, Fuzzy support vector machines, IEEE Transactions on Neural Networks, 13 (2002), 464-471. 
    [15] F. Liu and X. Xue, Subgradient-based neural network for nonconvex optimization problems in support vector machines with indefinite kernels, Journal of Industrial and Management Optimization, 12 (2016), 285-301.  doi: 10.3934/jimo.2016.12.285.
    [16] J. LuoS.-C. FangY. Bai and Z. Deng, Fuzzy quadratic surface support vector machine based on fisher discriminant analysis, Journal of Industrial and Management Optimization, 12 (2016), 357-373.  doi: 10.3934/jimo.2016.12.357.
    [17] J. Luo, S.-C. Fang, Z. Deng and X. Guo, Quadratic surface support vector machine for binary classification, Asia-Pacific Journal Of Operational Research, 33 (2016), 1650046. doi: 10.1142/S0217595916500469.
    [18] A. MarquesV. Garcia and J. Sanchez, On the suitability of resampling techniques for the class imbalance problem in credit scoring, Journal of the Operational Research Society, 64 (2013), 1060-1070.  doi: 10.1057/jors.2012.120.
    [19] D. Martin, Early warning of bank failure: a logistic regression approach, Journal of Banking and Finance, 1 (1977), 249-276. 
    [20] B. Schölkopf and  A. SmolaLearning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, 2002.  doi: 10.1016/B978-044451378-6/50001-6.
    [21] Y. TianM. SunZ. DengJ. Luo and Y. Li, A new fuzzy set and non-kernel svm approach for mislabeled binary classification with applications, IEEE Transactions on Fuzzy Systems, 25 (2017), 1536-1545. 
    [22] W. TungaC. Queka and P. Cheng, Genso-ews: A novel neural-fuzzy based early warning system for predicting bank failures, Neural Networks, 17 (2004), 567-587.  doi: 10.1016/j.neunet.2003.11.006.
    [23] J. Wiginton, A note on the comparison of logic and discriminant models of customer credit behavior, Journal of Financial and Quantitative Analysis, 15 (1980), 757-770. 
    [24] X. YanY. BaiS.-C. Fang and J. Luo, A kernel-free quadratic surface support vector machine for semi-supervised learning, Journal of the Operational Research Society, 67 (2016), 1001-1011.  doi: 10.1007/s10957-015-0843-4.
    [25] X. ZhangX. Xiao and G. Xu, Fuzzy support vector machine based on affinity among samples, Journal of Software, 17 (2006), 951-958.  doi: 10.1360/jos170951.
    [26] H. ZhongC. MiaoZ. Shen and Y. Feng, Comparing the learning effectiveness of BP, ELM, I-ELM, and SVM for corporate credit ratings, Neurocomputing, 128 (2014), 285-295.  doi: 10.1016/j.neucom.2013.02.054.
    [27] L. ZhouK. Lai and J. Yen, Credit scoring models with auc maximization based on weighted svm, International Journal of Information Technology and Decision Making, 4 (2009), 677-696.  doi: 10.1142/S0219622009003582.
  • 加载中

Tables(5)

SHARE

Article Metrics

HTML views(1352) PDF downloads(268) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return